Differential Equations I

Laplace Transformation

Chapters 11.6-11.9

Motivation

Idea: Consider the initial value problem of $n^{\rm th}$ order

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = r(t), \quad y(0) = y'(0) = \dots = y^{(n-1)}(0) = 0,$$

with suitable right hand side r.

Question: Can we find a transformation $Y(z)=\mathcal{T}[y(t)]$ resp. $R(z)=\mathcal{T}[r(t)]$, for which the inverse $y(t)=\tilde{\mathcal{T}}[Y(z)]$ resp. $r(t)=\tilde{\mathcal{T}}[R(z)]$ exists, such that

 $Y(z) = F[R(z)], \quad F \text{ suitable functional},$

is easily solvable? Then the solution $y(t) = \tilde{\mathcal{T}}[Y(z)]$ could be obtained easily.

Idea: Consider the initial value problem of n^{th} order

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = r(t), \quad y(0) = y'(0) = \dots = y^{(n-1)}(0) = 0,$$

with suitable right hand side r.

Question: Can we find a transformation $Y(z) = \mathcal{T}[y(t)]$ resp. $R(z) = \mathcal{T}[r(t)]$, for which the inverse $y(t) = \tilde{\mathcal{T}}[Y(z)]$ resp. $r(t) = \tilde{\mathcal{T}}[R(z)]$ exists, such that

$$Y(z) = F[R(z)],$$
 F suitable functional,

is easily solvable? Then the solution $y(t) = \tilde{\mathcal{T}}[Y(z)]$ could be obtained easily.

Definition Laplace Transformation

Definition: (Laplace Transformation) Let $f:[0,\infty[\to \mathbb{R}$ be a function. Then

 $F(z) = \int_{0}^{\infty} e^{-zt} f(t) dt$

with $z\in\mathbb{C}$ defines a function F called Laplace Transform of f. The mapping of f onto F is called Laplace Transformation. We also write $\mathcal{L}[f(t)]$.

 $\begin{array}{ll} \textbf{Definition:} \ (\text{exponential order}) \\ \text{A function} \ f: [0,\infty] \rightarrow \mathbb{R} \ \text{is of exponential order} \ \gamma, \ \text{if constants} \ M>0 \ \text{and} \ \gamma \in \mathbb{R} \\ \text{exist, such that for all} \ 0 \leq t < \infty \\ \end{array}$

 $|f(t)| \le Me^{\gamma t}$.

Proposition: (Existence of Laplace Transform) Let f be piecewise continuous in $[0,\infty[$ and of exponential order γ . Then the Laplace transform F(z) exists for all $z\in\mathbb{C}$ with $\mathrm{Re}z>\gamma$.

Definition: (Laplace Transformation) Let $f:[0,\infty[\to\mathbb{R}]$ be a function. Then

$$F(z) = \int_0^\infty e^{-zt} f(t) \ dt$$

with $z \in \mathbb{C}$ defines a function F called Laplace Transform of f. The mapping of f onto F is called Laplace Transformation. We also write $\mathcal{L}[f(t)]$.

Questions:

- For which f is the Laplace Transform usefully defined?
- Under which conditions does the improper integral exist?

Definition: (exponential order)

A function $f:[0,\infty[\to\mathbb{R}$ is of exponential order γ , if constants M>0 and $\gamma\in\mathbb{R}$ exist, such that for all $0\leq t<\infty$

$$|f(t)| \leq Me^{\gamma t}$$
.

Remarks:

- Polynomials are of exp. order.
- sin and cos are of exp. order.

Example: Employ Taylor Series for $t \geq 0$:

$$|t^3| = t^3 \le 6e^t = 6 + 6t + 3t^2 + t^3 + \cdots$$

Proposition: (Existence of Laplace Transform)

Let f be piecewise continuous in $[0, \infty[$ and of exponential order $\gamma.$ Then the Laplace transform F(z) exists for all $z \in \mathbb{C}$ with $\mathrm{Re}z > \gamma.$

Observations:

- The integral $\int_0^\infty e^{-zt} f(t) \ dt$ exists in a right half space of the Gaussian plane.
- The weaker f(t) grows for $t \to \infty$, the further the convergence area reaches to the left.

Inverse Laplace Transformation

 $\frac{1}{2\pi i} \lim_{A\to\infty} \int_{x-iA}^{x+iA} F(z)e^{zt} dz =$ $\frac{1}{2\pi}\lim_{k\to\infty}\int_{-A}^{A}F(x+is)e^{(x+is)t}\;\mathrm{d}s\;=\;\left\{\begin{array}{cc}\frac{R(0+0)+R(1-0)}{2}&(t>0),\\ \frac{R(0+0)+R(1-0)}{2}&(t=0),\\ 0&(t<0).\end{array}\right.$ In particular, in each point t of continuity of f $f(t) = \frac{1}{2\pi i} \lim_{A \to \infty} \int_{z-tA}^{z+tA} F(z)e^{it} dz$ $= \frac{1}{2\pi} \lim_{A \to \infty} \int_{-A}^{a+tA} F(x+is)e^{(x+is)t} ds$

Proposition: (Uniqueness of Laplace Transformation) Let f_1 and f_2 be of exponential order r, f_1, f_2 vanish for t < 0 and piecewise continuous in R. Further assume for the Laplace transforms $F_1(x) = F_2(x)$ for Rez $>\gamma$. Then for each t, at which f_1 and f_2 are continuous, it holds:

 $f_1(t) = f_2(t)$.

- \bullet The two propositions allow computation of f(t) from a Laplace transform F(z) by a line integral in the Gaussian plane.
- \bullet The Laplace transformation $f(t) \to F(z)$ is a bijective mapping.

$$f(t) = e^{4t}$$

has the unique Laplace transform

$$F(z) = \frac{1}{z - 4}$$

Proposition: (Inverse of the Laplace Transformation)

Let f be of exponential order γ , f vanishes for t<0 and is piecewise continuous in \mathbb{R} . Then for all $x=\mathrm{Re}z>\gamma$

$$\frac{1}{2\pi i} \lim_{A \to \infty} \int_{x-iA}^{x+iA} F(z)e^{zt} dz =$$

$$\frac{1}{2\pi} \lim_{A \to \infty} \int_{-A}^{A} F(x+is)e^{(x+is)t} ds = \begin{cases} \frac{f(t+0)+f(t-0)}{2} & (t>0), \\ \frac{f(0+0)}{2} & (t=0), \\ 0 & (t<0). \end{cases}$$

In particular, in each point t of continuity of f

$$f(t) = \frac{1}{2\pi i} \lim_{A \to \infty} \int_{x-iA}^{x+iA} F(z)e^{zt} dz$$
$$= \frac{1}{2\pi} \lim_{A \to \infty} \int_{-A}^{A} F(x+is)e^{(x+is)t} ds$$

for $x > \gamma$.

Proposition: (Uniqueness of Laplace Transformation)

Let f_1 and f_2 be of exponential order γ , f_1, f_2 vanish for t < 0 and piecewise continuous in \mathbb{R} . Further assume for the Laplace transforms $F_1(x) = F_2(x)$ for $\text{Re}z > \gamma$.

Then for each t, at which f_1 and f_2 are continuous, it holds:

$$f_1(t) = f_2(t).$$

Remarks:

- The two propositions allow computation of f(t) from a Laplace transform F(z) by a line integral in the Gaussian plane.
- The Laplace transformation $f(t) \to F(z)$ is a bijective mapping.

Example:

$$f(t) = e^{4t}$$

has the unique Laplace transform

$$F(z) = \frac{1}{z - 4}.$$

Computing Rules for Laplace Transformation

Proposition: (Linearity) Let f and g piecewise continuous in $[0,\infty[$ and of exponential order γ . Then for $a,b\in\mathbb{R}$ it holds 1. Let f be as in the previous proposition. Then for $\mathrm{Re}z>\gamma$ it holds $\mathcal{L}[f'(t)] = z\mathcal{L}[f(t)] - f(0).$ 2. Let f be (k-1)-times cost, differentiable and $f^{(k-1)}$ piecewise cost. Let $f, f', \dots, f^{(k-1)}$ be of exponential order γ . Then for $\operatorname{Res} > \gamma$ it halds $\mathcal{L}[f^{(k)}(t)] = x^k \mathcal{L}[f(t)] - x^{k-1}f(0) - \dots - f^{(k-1)}(0).$ $\mathcal{L}[af(t)+bg(t)]=a\mathcal{L}[f(t)]+g\mathcal{L}[g(t)].$ 3. Let f be like in 1. Then for $\mathrm{Re}z>\gamma$ it holds $\mathcal{L}\left[\int_{0}^{t} f(\tau) d\tau\right] = \frac{1}{s} \mathcal{L}[f(t)].$ Proposition: (Laplace Transformation of Product with Power Function) Let $g(t) = (-1)^{n}f^{n}f(t)$ and f Laplace transformable with Laplace transform $F(z) = \mathcal{L}[f(t)]$. Then $\mathcal{L}[g(t)] = \mathcal{L}[(-1)^n t^n f(t)] = F^{(n)}(z).$ $\mathcal{L}[f'(t)] = z\mathcal{L}[f(t)] - f(0) - [f(a+0) - f(a-0)]e^{-as}$. **Proposition:** (Laplace Transformation of T-periodic Functions) Let f be T-periodic (i.e., f(t-T) = f(t)), piecewise cont. and bounded Then it holds for Rec > 0 $\mathcal{L}[f(t)] = \frac{1}{1 - e^{-Ts}} \int_{0}^{T} e^{-zu} f(u) du.$ A damping factor e^{-at} in the origin domain results in a translation in the image domain: $\mathcal{L}[e^{-at}f(t)] = F(z+a)$ für $\mathrm{Re}z > \gamma - a$. 2. For $\alpha > 0$ it holds $\mathcal{L}[f(at)] = \frac{1}{a}F(\frac{z}{a})$ für $\text{Re}z > a \cdot \gamma$.

 $(f \circ g)(t) := \int_{-\infty}^{\infty} f(t-\tau)g(\tau) \ \mathrm{d}\tau, \quad t \in \mathbb{R}.$

Convention: We denote by $F(z)=\mathcal{L}[f(t)]$ the Laplace transform of a function with exponential order γ that is piecewise constant in $[0,\infty[$.

Proposition: (Linearity)

Let f and g piecewise continuous in $[0,\infty[$ and of exponential order $\gamma.$ Then for $a,b\in\mathbb{R}$ it holds

$$\mathcal{L}[af(t) + bg(t)] = a\mathcal{L}[f(t)] + g\mathcal{L}[g(t)].$$

Proof follows immediately from linearity of integrals.

Proposition: (Transformation of Derivatives and Integrals)

1. Let f be as in the previous proposition. Then for $\mathrm{Re}z>\gamma$ it holds

$$\mathcal{L}[f'(t)] = z\mathcal{L}[f(t)] - f(0).$$

2. Let f be (k-1)-times cont. differentiable and $f^{(k-1)}$ piecewise cont. Let $f, f', \ldots, f^{(k-1)}$ be of exponential order γ . Then for $\mathrm{Re}z > \gamma$ it holds

$$\mathcal{L}[f^{(k)}(t)] = z^k \mathcal{L}[f(t)] - z^{k-1} f(0) - \dots - f^{(k-1)}(0).$$

3. Let f be like in 1. Then for $\text{Re}z > \gamma$ it holds

$$\mathcal{L}[\int_0^t f(au) \; d au] = rac{1}{z} \mathcal{L}[f(t)].$$

Proof:

1. Follows from definition of Laplace transform by partial integration

$$\begin{split} \mathcal{L}[f'(t)] &= \int_0^\infty e^{-zt} f'(t) \ dt \\ &= \lim_{A \to \infty} e^{-zt} f(t)|_{t=0}^{t=A} - \int_0^\infty (-z) e^{-zt} f(t) \ dt \\ &= -f(0) + z \int_0^\infty e^{-zt} f(t) \ dt = z \mathcal{L}[f(t)] - f(0). \end{split}$$

- 2. Apply above partial integration k-times.
- 3. Apply 1. to the function $h(t) = \int_0^t f(\tau) d\tau$.

Proposition: (Transformation of Derivative of Discontinuous Function) Let f be again a function of exponential order γ with the other prerequisites of the prop., and assume f to have a jump discontinuity at t=1>0. Then it holds

$$\mathcal{L}[f'(t)] = z\mathcal{L}[f(t)] - f(0) - [f(a+0) - f(a-0)]e^{-az}.$$

Sketch of proof: split the integral

$$\int_0^\infty e^{-z} f'(t) \ dt$$

into $\int_0^{a-0} (\cdot) + \int_{a+0}^{\infty} (\cdot)$, apply arguments analogous to proposition above.

Satz: (Damping-Translation, Stretching) Let f be a function of exponential order, γ with the prerequisites of the propositions above, $F(z) = \mathcal{L}[f(t)] = \int_0^\infty e^{-z} f(t) \ dt$, $\mathrm{Re}z > \gamma$.

1. A damping factor e^{-at} in the origin domain results in a translation in the image domain:

$$\mathcal{L}[e^{-at}f(t)] = F(z+a)$$
 für $\text{Re}z > \gamma - a$.

2. For a > 0 it holds

$$\mathcal{L}[f(at)] = \frac{1}{a}F(\frac{z}{a})$$
 für $\mathrm{Re}z > a \cdot \gamma$.

Definition: (Convolution)

Let f and g be functions. The convolution (product) of f and g is defined in general as

$$(f * g)(t) := \int_{-\infty}^{\infty} f(t - \tau)g(\tau) \ d\tau, \quad t \in \mathbb{R}.$$

Remarks:

- We assume in each case that the improper integral exists.
- For f and g functions as in the Laplace transformation it holds f(t) = g(t) = 0 for t < 0. Therefore, we have

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau) \ d\tau = \int_{0}^{\infty} f(t - \tau)g(\tau) \ d\tau$$

Proposition: (Convolution Rule)

Let f and g be functions of exponential order γ with f(t)=g(t)=0 for t<0. Let f be continuous and g piecewise continuous in \mathbb{R} . Then the Laplace transform of the convolution f*g exists for $\mathrm{Re}z>\gamma$ and it holds

$$\mathcal{L}[(f * g)(t)] = \mathcal{L}[f(t)] \cdot \mathcal{L}[g(t)]$$

Proposition: (Laplace Transformation of T-periodic Functions) Let f be T-periodic (i.e., f(t-T)=f(t)), piecewise cont. and bounded. Then it holds for $\mathrm{Re}z>0$

$$\mathcal{L}[f(t)] = \frac{1}{1 - e^{-Tz}} \int_0^T e^{-zu} f(u) \ du.$$

Proposition: (Laplace Transformation of Product with Power Function) Let $g(t)=(-1)^nt^nf(t)$ and f Laplace transformable with Laplace transform $F(z)=\mathcal{L}[f(t)]$. Then

$$\mathcal{L}[g(t)] = \mathcal{L}[(-1)^n t^n f(t)] = F^{(n)}(z).$$

Solution of ODEs by Laplace Transformation

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = r(t), \quad y(0) = y'(0) = \dots = y^{(n-1)}(0) = 0,$$

with r piecewise continuous function of exponential order.

$$Y(z) = \mathcal{L}[y(t)], \quad \text{and} \quad R(z) = \mathcal{L}[r(t)].$$

The Laplace transformation of the IVP is derived from the rules above:

$$(z^n + a_{n-1}z^{n-1} + \dots + a_0)Y(z) = R(z)$$

$$\Rightarrow Y(z) = (z^n + a_{n-1}z^{n-1} + \dots + a_0)^{-1}R(z) =: G(z)R(z).$$

If one finds a function g(t) with $\mathcal{L}[g(t)] = G(t)$, then

$$\begin{split} \mathcal{L}[y(t)] &= Y(z) = F(z)R(z) = \mathcal{L}[g(t)]\mathcal{L}[r(t)] = \mathcal{L}[(g*r)(t)] \\ \Rightarrow & y(t) &= (g*r)(t) = \int_0^t g(t-\tau)r(\tau) \ d\tau. \end{split}$$

The function $K(t,\tau):=g(t-\tau)$ is called Green's Function.

Idea: Let the IVP of n^{th} order be given

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = r(t), \quad y(0) = y'(0) = \dots = y^{(n-1)}(0) = 0,$$

with r piecewise continuous function of exponential order. Set

$$Y(z) = \mathcal{L}[y(t)], \quad \text{and} \quad R(z) = \mathcal{L}[r(t)].$$

The Laplace transformation of the IVP is derived from the rules above:

$$(z^{n} + a_{n-1}z^{n-1} + \dots + a_{0})Y(z) = R(z)$$

$$\Rightarrow Y(z) = (z^{n} + a_{n-1}z^{n-1} + \dots + a_{0})^{-1}R(z) =: G(z)R(z).$$

If one finds a function g(t) with $\mathcal{L}[g(t)] = G(t)$, then

$$\mathcal{L}[y(t)] = Y(z) = F(z)R(z) = \mathcal{L}[g(t)]\mathcal{L}[r(t)] = \mathcal{L}[(g*r)(t)]$$

$$\Rightarrow y(t) = (g*r)(t) = \int_0^t g(t-\tau)r(\tau) d\tau.$$

The function $K(t,\tau):=g(t-\tau)$ is called Green's Function.

