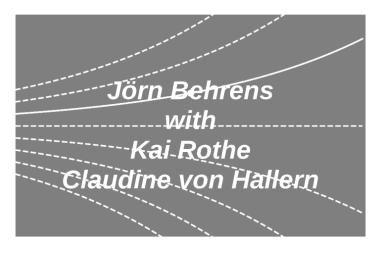


Differential Equations I



Solution by Power Series

Chapters 6.11-6.12

Recap Laplace Transformation

Idea: Consider the initial value problem of $n^{\rm th}$ order

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = r(t), \quad y(0) = y'(0) = \dots = y^{(n-1)}(0) = 0,$$

with suitable right hand side r.

Question: Can we find a transformation $Y(z)=\mathcal{T}[y(t)]$ resp. $R(z)=\mathcal{T}[r(t)]$, for which the inverse $y(t)=\tilde{\mathcal{T}}[Y(z)]$ resp. $r(t)=\tilde{\mathcal{T}}[R(z)]$ exists, such that

$$Y(z) = F[R(z)], \quad F \text{ suitable functional},$$

is easily solvable? Then the solution $y(t) = \tilde{\mathcal{T}}[Y(z)]$ could be obtained easily.

Idea: Let the IVP of n^{th} order be given

$$y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = r(t), \quad y(0) = y'(0) = \cdots = y^{(n-1)}(0) = 0,$$

with \boldsymbol{r} oiecewise continuous function of exponential order.

$$Y(z) = \mathcal{L}[y(t)], \quad \text{and} \quad R(z) = \mathcal{L}[r(t)].$$

The Laplace transformation of the IVP is derived from the rules above:

$$(z^n + a_{n-1}z^{n-1} + \dots + a_0)Y(z) = R(z)$$

$$\Rightarrow Y(z) = (z^n + a_{n-1}z^{n-1} + \dots + a_0)^{-1}R(z) =: G(z)R(z).$$

If one finds a function g(t) with $\mathcal{L}[g(t)] = G(t)$, then

$$\begin{split} \mathcal{L}[y(t)] &= Y(z) = F(z)R(z) = \mathcal{L}[g(t)]\mathcal{L}[r(t)] = \mathcal{L}[(g*r)(t)] \\ \Rightarrow & y(t) = (g*r)(t) = \int_0^t g(t-\tau)r(\tau) \ d\tau. \end{split}$$

The function $K(t,\tau):=g(t-\tau)$ is called Green's Function.

Idea: Consider the initial value problem of n^{th} order

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = r(t), \quad y(0) = y'(0) = \dots = y^{(n-1)}(0) = 0,$$

with suitable right hand side r.

Question: Can we find a transformation $Y(z) = \mathcal{T}[y(t)]$ resp. $R(z) = \mathcal{T}[r(t)]$, for which the inverse $y(t) = \tilde{\mathcal{T}}[Y(z)]$ resp. $r(t) = \tilde{\mathcal{T}}[R(z)]$ exists, such that

$$Y(z) = F[R(z)],$$
 F suitable functional,

is easily solvable? Then the solution $y(t) = \tilde{\mathcal{T}}[Y(z)]$ could be obtained easily.

Idea: Let the IVP of n^{th} order be given

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = r(t), \quad y(0) = y'(0) = \dots = y^{(n-1)}(0) = 0,$$

with r oiecewise continuous function of exponential order. Set

$$Y(z) = \mathcal{L}[y(t)], \quad \text{and} \quad R(z) = \mathcal{L}[r(t)].$$

The Laplace transformation of the IVP is derived from the rules above:

$$(z^{n} + a_{n-1}z^{n-1} + \dots + a_{0})Y(z) = R(z)$$

$$\Rightarrow Y(z) = (z^{n} + a_{n-1}z^{n-1} + \dots + a_{0})^{-1}R(z) =: G(z)R(z).$$

If one finds a function g(t) with $\mathcal{L}[g(t)] = G(t)$, then

$$\mathcal{L}[y(t)] = Y(z) = F(z)R(z) = \mathcal{L}[g(t)]\mathcal{L}[r(t)] = \mathcal{L}[(g*r)(t)]$$

$$\Rightarrow y(t) = (g*r)(t) = \int_0^t g(t-\tau)r(\tau) d\tau.$$

The function $K(t,\tau):=g(t-\tau)$ is called Green's Function.

Motivation

Idea:

- 1. Which additional transformations could we use to solve a given ODE?
- 2. Recall Power Series (simplifying sin, cos, exp!).
- 3. Derivative can be computed easily (component-wise).

Idea:

- 1. Which additional transformations could we use to solve a given ODE?
- 2. Recall Power Series (simplifying \sin , \cos , \exp !).
- 3. Derivative can be computed easily (component-wise).

Power Series Approach

Summary: Consider the IVP

 $y'' + y = \cos(2x)$, with y(0) = 0, y'(0) = 1.

- 1. Use the power series approach: $y(x)=a_0+a_1x+a_2x^2+a_3x^3+\cdots=\sum_{k=0}^\infty a_kx^k.$
- 2. Compute y' and y'' from this series.
- 3. Obtain a_0 and a_1 from initial values.
- 4. Insert series in ODE, use the power series for \cos .
- 5. Compare coefficients and obtain y as a pwer series.
- 6. If possible, obtain closed form for \boldsymbol{y} from power series.

Remarks

 \bullet If non-zero initial conditions $y(x_0)=y_0, y'(x_0)=y_1, x_0\neq 0$ are given, use the approach

$$y(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots = \sum_{k=0}^{\infty} a_k(x - x_0)^k$$

- \bullet In general a closed form cannot be expected. Then the power series of y(x), or even just the first members of it, need to suffice.
- The main advantage of the power series is its "simple" derivation!

Summary:

Consider the IVP

$$y'' + y = \cos(2x)$$
, with $y(0) = 0, y'(0) = 1$.

- 1. Use the power series approach: $y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots = \sum_{k=0}^{\infty} a_k x^k$.
- 2. Compute y' and y'' from this series.
- 3. Obtain a_0 and a_1 from initial values.
- 4. Insert series in ODE, use the power series for \cos .
- 5. Compare coefficients and obtain y as a pwer series.
- 6. If possible, obtain closed form for y from power series.

Remarks:

• If non-zero initial conditions $y(x_0) = y_0, y'(x_0) = y_1, x_0 \neq 0$ are given, use the approach

$$y(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots = \sum_{k=0}^{\infty} a_k(x - x_0)^k.$$

- In general a closed form cannot be expected. Then the power series of y(x), or even just the first members of it, need to suffice.
- The main advantage of the power series is its "simple" derivation!

Taylor Series

Idea: Consider the IVP

$$y'=f(x,y), \quad y(x_0)=y_0$$

Use the Taylor polynomial

$$T_n(x) = y(x_0) + y'(x_0)(x - x_0) + \frac{y''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{y^{(n)}(x_0)}{n!}(x - x_0)^n.$$

- 1. Then obtain $y(x_0) = y_0$.
- 2. Compute $y'(x_0)$ from the formula $y'(x_0)=f(x_0,y_0)$.
- 3. Obtain y'' by differentiation: $y''=\frac{df}{dx}(x,y).$ In order to obtain $y''(x_0)$ compute:

$$y''(x_0) = \frac{\partial f}{\partial x}(x_0.y_0) + \frac{\partial f}{\partial y}(x_0, y_0)y'(x_0).$$

4. Continue successively.

Idea:

Consider the IVP

$$y' = f(x, y), \quad y(x_0) = y_0$$

Use the Taylor polynomial

$$T_n(x) = y(x_0) + y'(x_0)(x - x_0) + \frac{y''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{y^{(n)}(x_0)}{n!}(x - x_0)^n.$$

- 1. Then obtain $y(x_0) = y_0$.
- 2. Compute $y'(x_0)$ from the formula $y'(x_0) = f(x_0, y_0)$.
- 3. Obtain y'' by differentiation: $y'' = \frac{df}{dx}(x, y)$. In order to obtain $y''(x_0)$ compute:

$$y''(x_0) = \frac{\partial f}{\partial x}(x_0.y_0) + \frac{\partial f}{\partial y}(x_0, y_0)y'(x_0).$$

4. Continue successively.

Idea:

Consider the IVP

$$y' = f(x, y), \quad y(x_0) = y_0$$

Use the Taylor polynomial

$$T_n(x) = y(x_0) + y'(x_0)(x - x_0) + \frac{y''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{y^{(n)}(x_0)}{n!}(x - x_0)^n.$$

- 1. Then obtain $y(x_0) = y_0$.
- 2. Compute $y'(x_0)$ from the formula $y'(x_0) = f(x_0, y_0)$.
- 3. Obtain y'' by differentiation: $y'' = \frac{df}{dx}(x, y)$. In order to obtain $y''(x_0)$ compute:

$$y''(x_0) = \frac{\partial f}{\partial x}(x_0.y_0) + \frac{\partial f}{\partial y}(x_0, y_0)y'(x_0).$$

4. Continue successively.

Remark: It is not possible to estimate the accuracy, because a general formula for $y^{(n)}(x_0)$ is unknown.

Bessel's Differential Equation

Consider: Bessel's Differential Equation of order n:

$$x^2y'' + xy' + (x^2 - n^2)y = 0, \quad 0 \le n \in \mathbb{R}.$$

Ansatz:

Use a general power series approach

$$y(x) = x^r \sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} a_k x^{k+r}$$

with $a_0 \neq 0$ and $r \in \mathbb{R}$.

Comparison of Coefficients: Substitute into ODE and compare coefficients of the power series x^r , x^{r-1} , x^{r+k} ($k=2,3,\ldots$) yields the following:

$$\begin{array}{rcl} (r^2-n^2)a_0&=&0\\ ((r+1)^2-n^2)a_1&=&0\\ (k+r+n)(k+r-n)a_k+a_{k-2}&=&0,\quad k=2,3,\ldots \end{array}$$

Since $a_0 \neq 0$ we have r=n or r=-n (a_0 then arbitrary!).

Consider: Bessel's Differential Equation of order n:

$$x^2y'' + xy' + (x^2 - n^2)y = 0, \quad 0 \le n \in \mathbb{R}.$$

Consider: Bessel's Differential Equation of order n:

$$x^2y'' + xy' + (x^2 - n^2)y = 0, \quad 0 \le n \in \mathbb{R}.$$

Remark: This ODE can be derived from representing the wave equation in cylindrical coordinates.

Ansatz:

Use a general power series approach

$$y(x) = x^r \sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} a_k x^{k+r}$$

with $a_0 \neq 0$ and $r \in \mathbb{R}$.

Comparison of Coefficients:

Substitute into ODE and compare coefficients of the power series x^r , x^{r-1} , x^{r+k} $(k=2,3,\ldots)$ yields the following:

$$(r^{2} - n^{2})a_{0} = 0$$

$$((r+1)^{2} - n^{2})a_{1} = 0$$

$$(k+r+n)(k+r-n)a_{k} + a_{k-2} = 0, k = 2, 3, ...$$

Since $a_0 \neq 0$ we have r = n or r = -n (a_0 then arbitrary!).

r = n

$$a_k = -\frac{a_{k-2}}{k(2n+k)}, \quad k = 2, 3, ...$$

• Because $a_1=0,$ all a_k with odd index vanish: $a_{2k-1}=0.$

$$a_2 = -\frac{1}{2^2(n+1)},$$

 $a_4 = \frac{a_0}{2^42(n+1)(n+2)},...$

 $\begin{array}{rcl} & & & & & & \\ & & & & & \\ a_4 & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\$

Formal Solution: We obtain the formal Solution

$$\begin{array}{ll} y(x) & = & a_0x^n \left[1 - \frac{1}{1!(n+1)}(\frac{x}{2})^2 + \frac{1}{2!(n+1)(n+2)}(\frac{x}{2})^4 + \cdots \right. \\ & + & \left. (-1)^k \frac{1}{k!(n+1)\cdots(n+k)}(\frac{x}{2})^{2k} + \cdots \right] \end{array}$$

The series in square brackets is indefinitely convergent (for all $x \in \mathbb{R}$).

$$\frac{1}{k!(n+1)\cdots(n+k)} = \frac{\Gamma(n+1)}{\Gamma(k+1)\Gamma(n+k+1)}$$

$$\begin{array}{lll} y(x) & = & a_0 x^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+1) \cdots (n+k)} (\frac{x}{2})^{2k} \\ & = & a_0 2^n \Gamma(n+1) \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+1) \Gamma(n+k+1)} (\frac{x}{2})^{2k+n} \end{array}$$

Bessel Function of $n^{\rm th}$ Order of First Kind: Choose $a_0=\frac{1}{2^n\Gamma(n+1)}.$ Then

$$J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+1)\Gamma(n+k+1)} (\frac{x}{2})^{2k+n}$$

is a solution of Bessel's ODE

$$x^2y'' + xy' + (x^2 - n^2)y = 0.$$

Recursion:

- From $a_0 \neq 0$ and r = n it follows with comparison of coefficients: $a_1 = 0$.
- Furthermore, the following recursion holds

$$a_k = -\frac{a_{k-2}}{k(2n+k)}, \quad k = 2, 3, \dots$$

- Because $a_1 = 0$, all a_k with odd index vanish: $a_{2k-1} = 0$.
- One obtains

$$a_2 = -\frac{a_0}{2^2(n+1)},$$

$$a_4 = \frac{a_0}{2^42(n+1)(n+2)}, \dots$$
 in general $a_{2k} = (-1)^k \frac{a_0}{2^{2k}k!(n+1)(n+2)\cdots(n+k)}, \quad (k=1,2,\ldots)$

Formal Solution: We obtain the formal Solution

$$y(x) = a_0 x^n \left[1 - \frac{1}{1!(n+1)} (\frac{x}{2})^2 + \frac{1}{2!(n+1)(n+2)} (\frac{x}{2})^4 + \cdots + (-1)^k \frac{1}{k!(n+1)\cdots(n+k)} (\frac{x}{2})^{2k} + \cdots \right]$$

The series in square brackets is indefinitely convergent (for all $x \in \mathbb{R}$).

Formal Solution: We obtain the formal Solution

$$y(x) = a_0 x^n \left[1 - \frac{1}{1!(n+1)} (\frac{x}{2})^2 + \frac{1}{2!(n+1)(n+2)} (\frac{x}{2})^4 + \cdots + (-1)^k \frac{1}{k!(n+1)\cdots(n+k)} (\frac{x}{2})^{2k} + \cdots \right]$$

The series in square brackets is indefinitely convergent (for all $x \in \mathbb{R}$).

Proof of indefinite convergence: Set

$$u=(rac{x}{2})^2$$
, and
$$b_k=(-1)^krac{1}{k!(n+1)\cdots(n+k)}.$$

For the series $\sum_{k=0}^{\infty} b_k u^k$ it holds

$$\frac{|b_k|}{|b_{k+1}|} = (k+1)(n+k+1), \text{ so } \lim_{k \to \infty} \frac{|b_k|}{|b_{k+1}|} = \infty.$$

According to proposition (2nd term) the series converges for all $u \in \mathbb{R}$ and thus for all $x \in \mathbb{R}$.

Utilization of Gamma Function: Use the properties of the Gamma function $\Gamma(x+1)=x\Gamma(x)$ (x>0) and $\Gamma(k+1)=k!$ $(k=0,1,2,\ldots)$. Then

$$\frac{1}{k!(n+1)\cdots(n+k)} = \frac{\Gamma(n+1)}{\Gamma(k+1)\Gamma(n+k+1)}$$

Therefore

$$y(x) = a_0 x^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+1)\cdots(n+k)} (\frac{x}{2})^{2k}$$
$$= a_0 2^n \Gamma(n+1) \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+1)\Gamma(n+k+1)} (\frac{x}{2})^{2k+n}$$

Bessel Function of n^{th} Order of First Kind:

Choose $a_0 = \frac{1}{2^n \Gamma(n+1)}$. Then

$$J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+1)\Gamma(n+k+1)} (\frac{x}{2})^{2k+n}$$

is a solution of Bessel's ODE

$$x^2y'' + xy' + (x^2 - n^2)y = 0.$$

ullet With r=-n we seek a solution of the form

$$y(x) = x^{-n} \sum_{k=0}^{\infty} a_k x^k$$
.

- \bullet From $a_0 \neq 0$ and comparison of coefficients we have: $a_1 = 0.$
- Furthermore, the following recursion holds

$$a_k = -\frac{a_{k-2}}{k(k-2n)}, \quad k = 2, 3, ...$$

(Required: $n \neq 1, \frac{3}{2}, 2, \frac{5}{2}, \ldots$).

Formal Solution: Analoguous to procedure for r=n we obtain

$$J_{-n}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+1)\Gamma(-n+k+1)} (\frac{x}{2})^{2k-n}$$

- The formula holds for $n \neq 0,1,2,\ldots$ $J_n(x)$ and $J_{-n}(x)$ are two linearly independent solutions of Bessel's ODE, so a fundamental system.
- For $n \geq 0, \ n \neq 0, 1, 2 \dots$ a general solution to Bessel's ODE is given by: $y(x) = c1J_n(x) + c_2J_{-n}(x)$ $(c_1, c_2 \in \mathbb{R}).$
- For solutions bounded for $x \to 0$, $c_2 = 0$ is required, since $J_{-n}(x) = \mathcal{O}(x^{-n})$.

 $Y_{t}(x) = \lim_{x \to x} \frac{J_{\tau}(x) \cos(x\tau) - J_{-\tau}(x)}{\sin(x\tau)}.$

General Solution of Bessel's ODE:

 $y(x) = c_1J_n(x) + c_2Y_n(x)$ $(c_1, c_2 \in \mathbb{R})$ is general solution of Bessel's ODE

 $x^2y'' + xy' + (x^2 - n^2)y = 0,$

$$\begin{array}{lcl} J_n(x) & = & \displaystyle \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+1)\Gamma(n+k+1)} {x \choose 2}^{2k+n}, \\ Y_n(x) & = & \displaystyle \lim_{\nu \to n} \frac{J_{\nu}(x) \cos(\nu \pi) - J_{-\nu}(x)}{\sin(\nu \pi)}. \end{array}$$

Recursion:

• With r = -n we seek a solution of the form

$$y(x) = x^{-n} \sum_{k=0}^{\infty} a_k x^k.$$

- From $a_0 \neq 0$ and comparison of coefficients we have: $a_1 = 0$.
- Furthermore, the following recursion holds

$$a_k = -\frac{a_{k-2}}{k(k-2n)}, \quad k = 2, 3, \dots$$

(Required: $n \neq 1, \frac{3}{2}, 2, \frac{5}{2}, \ldots$).

Formal Solution: Analoguous to procedure for r = n we obtain

$$J_{-n}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+1)\Gamma(-n+k+1)} (\frac{x}{2})^{2k-n}$$

- The formula holds for $n \neq 0, 1, 2 \dots$
- $J_n(x)$ and $J_{-n}(x)$ are two linearly independent solutions of Bessel's ODE, so a fundamental system.
- \bullet For $n\geq 0$, $n\neq 0,1,2\dots$ a general solution to Bessel's ODE is given by:

$$y(x) = c1J_n(x) + c_2J_{-n}(x) \quad (c_1, c_2 \in \mathbb{R}).$$

• For solutions bounded for $x \to 0$, $c_2 = 0$ is required, since $J_{-n}(x) = \mathcal{O}(x^{-n})$.

Bessel Function of n^{th} Order of Second Kind:

• **Question**: Solution for n = 0, 1, 2, ...?

• Ansatz: Sset -n in $J_n(x)$.

• Observe: for $0 \le k \le n-1$ it is $\Gamma(-n+k+1) = \infty$. Then set the coefficient to zero!

• Obtain:

$$J_{-n}(x) = \sum_{k=n}^{\infty} \frac{(-1)^k}{\Gamma(k+1)\Gamma(-n+k+1)} (\frac{x}{2})^{2k-n}$$
$$= (-1)^n \sum_{k=n}^{\infty} \frac{(-1)^k}{\Gamma(k+1)\Gamma(n+k+1)} (\frac{x}{2})^{2k+n} = (-1)^n J_n(x).$$

• Fundamental System: Since $J_{-n}(x)$ in this case lin. dependent, we need to expand $J_n(x)$ to a fundamental system (Bessel funktion of second kind, or Weber function, or Neumann function):

$$Y_n(x) = \lim_{\nu \to n} \frac{J_{\nu}(x)\cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)}.$$

ullet One can show: \lim exists and $J_n(x), Y_n(x)$ form fundamental system.

General Solution of Bessel's ODE:

$$y(x) = c_1 J_n(x) + c_2 Y_n(x) \quad (c_1, c_2 \in \mathbb{R})$$

is general solution of Bessel's ODE

$$x^2y'' + xy' + (x^2 - n^2)y = 0,$$

where

$$J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+1)\Gamma(n+k+1)} (\frac{x}{2})^{2k+n},$$

$$Y_n(x) = \lim_{\nu \to n} \frac{J_{\nu}(x)\cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)}.$$

