Differential Equations I

Eigenvalue Problems

Chapter 6.13

Recap: Self-adjoint **Differential Operators**

 $-L[y] = \lambda w(x)y,$ $R_1(y) = \alpha_1 y(a) + \beta_1 y'(a) = 0,$ $R_2(y) = \alpha_2 y(b) + \beta_2 y'(b) = 0;$

with L Sturm-Liouville differential operator, $\lambda \in \mathbb{R}$ a parameter, $\alpha_k, \beta_k \in \mathbb{R}$ with $\alpha_k^2 + \beta_k^2 > 0$ (k=1,2), w(x) a positive continuous function on I.

Assume $C^2([a,b],\mathbb{R})$ as domain of L, more precisely the subset $M\subset C^2([a,b],\mathbb{R})$ of functions fulfilling the boundary conditions!. The elements in M are called test

Proposition: (Self Adjoint Sturm-Liouville Eigen Value Problem) Let L|y| = (y(x)y') + y(x)y be the Sturm-Liouville differential operator for $x \in [a,b]$ with cost. diff. function p(x) > 0, cost. diff. function q(x) > 0, cost. diff. function q(x) > 0, $\lambda \in \mathbb{R}$ a parameter and $\alpha_k, \beta_k \in \mathbb{R}$ with $\alpha_k^2 + \beta_k^2 > 0$ (k = 1, 2). Then the Sturm-Liouville agen value problem

 $L[y] + \lambda w(x)y = 0$, $\alpha_1 y(a) + \beta_1 y'(a) = 0$, $\alpha_2 y(b) + \beta_2 y'(b) = 0$

Non-trivial solutions $y_{\lambda}(x)$ corresponding to given parameters λ are called eigenfunctions (if they exist). The corresponding parameters λ are called eigenvalues of the Sturm-Liouville eigen value problem.

 $\begin{tabular}{ll} \textbf{Definition:} & (General Self Adjoint Differential Operator) \\ \textbf{Let L be a self adjoint differential operator of 2^{ab} order on $I=[a,b]$, and $M \subset C^2([a,b], B)$ he set of all functions fulfilling given boundary conditions $x=a$ and $x=b$ (Lest functions). If for all $u,v=b$ of M holds that M for all $u,v=b$. The holds that M is all $u,v=b$. } \label{eq:definition:}$

we call L (general) self adjoint differential operator on M. The corresponding boundary value problem is also called self adjoint.

Consider: (Boundary Value Problem)

Let us seek the solution on interval I = [a, b] of

$$-L[y] = \lambda w(x)y,$$

$$R_1(y) = \alpha_1 y(a) + \beta_1 y'(a) = 0,$$

$$R_2(y) = \alpha_2 y(b) + \beta_2 y'(b) = 0;$$

with L Sturm-Liouville differential operator, $\lambda \in \mathbb{R}$ a parameter, $\alpha_k, \beta_k \in \mathbb{R}$ with $\alpha_k^2 + \beta_k^2 > 0$ (k = 1, 2), w(x) a positive continuous function on I.

Assume $C^2([a,b],\mathbb{R})$ as domain of L, more precisely the subset $M\subset C^2([a,b],\mathbb{R})$ of functions fulfilling the boundary conditions!. The elements in M are called test functions.

Definition: (General Self Adjoint Differential Operator)

Let L be a self adjoint differential operator of $2^{\rm nd}$ order on I=[a,b], and $M\subset C^2([a,b],\mathbb{R})$ the set of all functions fulfilling given boundary conditions x=a and x=b (test functions).

If for all $u, v \in M$ it holds that

$$(L[u], v) = (u, L[v]),$$

we call L (general) self adjoint differential operator on M. The corresponding boundary value problem is also called self adjoint.

Proposition: (Self Adjoint Sturm-Liouville Eigen Value Problem) Let L[y] = (p(x)y')' + q(x)y be the Sturm-Liouville differential operator for $x \in [a, b]$

with cont. diff. function p(x)>0, cont. diff. function q(x) and cont. function w(x)>0, $\lambda\in\mathbb{R}$ a parameter and $\alpha_k,\beta_k\in\mathbb{R}$ with $\alpha_k^2+\beta_k^2>0$ (k=1,2).

Then the Sturm-Liouville eigen value problem

$$L[y] + \lambda w(x)y = 0$$
, $\alpha_1 y(a) + \beta_1 y'(a) = 0$, $\alpha_2 y(b) + \beta_2 y'(b) = 0$

is self adjoint.

Non-trivial solutions $y_{\lambda}(x)$ corresponding to given parameters λ are called eigenfunctions (if they exist). The corresponding parameters λ are called eigenvalues of the Sturm-Liouville eigen value problem.

Orthogonality

Definition

ullet Introduce a scalar product on the vector space $C^2([a,b],\mathbb{R})$:

$$\langle u, v \rangle := \int_{a}^{b} u(x)v(x)w(x) dx.$$

- ullet With $w:[a,b]
 ightarrow \mathbb{R}$ an integrable and in]a,b[positive weight function.
- \bullet Two elements $u,v\in C^2([a,b],\mathbb{R})$ are called orthogonal, if $\langle u,v\rangle=0.$

Recall: (Orthogonality in \mathbb{R}^n)

If {e₁, e₂, ..., e_n} is an orthonormal basis of Rⁿ ((e_i, e_k) = δ_{ik}), then each vector v ∈ Rⁿ can be written:

For the coefficients it holds: c_j = (x, e_j), j = 1,...,

Proposition: (Orthogonality in Sturm-Liouville Eigenvalue Problems)
For the coefficient functions of the homogeneous Sturm-Liouville differential equation

 $L[y] + \lambda wy = (p(x)y')' + q(x)y + \lambda wy = 0$

a parameter, assume

ullet For $x \in [a,b]$ let p(x) be continuously differentiable,

 $\bullet \ \ {\rm let} \ q(x), w(x) \ {\rm be \ continuous}.$

 $\bullet \ \ \text{For} \ x \in]a,b[\ \text{let} \ p(x)>0 \ \text{and} \ w(x)>0.$

Then two non-trivial solutions $y_1(x),y_2(x)\in C^2([a,b],\mathbb{R})$ corresponding to two different parameter values $\lambda=\lambda_1$ and $\lambda=\lambda_2$ are orthogonal i.e.,

$$\langle y_1, y_2 \rangle = \int_a^b y_1(x)y_2(x)w(x) dx = 0,$$

1. y_1 and y_2 satisfy the homogeneous boundary conditions $R_1(y)=0=R_2(y)$ i.e., λ_1,λ_2 are eigenvalues corresponding to eigenfunctions y_1,y_2 of the Sturm-Liouville eigenvalue problem, or

2. the coefficient function p(x) fulfills the condition p(a)=p(b)=0.

Definitions:

• Introduce a scalar product on the vector space $C^2([a,b],\mathbb{R})$:

$$\langle u, v \rangle := \int_a^b u(x)v(x)w(x) \ dx.$$

- ullet With $w:[a,b]
 ightarrow \mathbb{R}$ an integrable and in]a,b[positive weight function.
- Two elements $u, v \in C^2([a, b], \mathbb{R})$ are called orthogonal, if $\langle u, v \rangle = 0$.

Recall: (Orthogonality in \mathbb{R}^n)

• If $\{e_1, e_2, \dots, e_n\}$ is an orthonormal basis of \mathbb{R}^n ($(e_i, e_k) = \delta_{ik}$), then each vector $\mathbf{x} \in \mathbb{R}^n$ can be written:

$$\mathbf{x} = \sum_{k=1}^{n} c_k \mathbf{e}_k.$$

• For the coefficients it holds: $c_j = (\mathbf{x}, \mathbf{e}_j)$, $j = 1, \dots, n$.

Proposition: (Orthogonality in Sturm-Liouville Eigenvalue Problems)
For the coefficient functions of the homogeneous Sturm-Liouville differential equa-

tion

$$L[y] + \lambda wy = (p(x)y')' + q(x)y + \lambda wy = 0$$

with $\lambda \in \mathbb{R}$ a parameter, assume:

- For $x \in [a, b]$ let p(x) be continuously differentiable,
- let q(x), w(x) be continuous.
- For $x \in]a,b[$ let p(x) > 0 and w(x) > 0.

Then two non-trivial solutions $y_1(x), y_2(x) \in C^2([a,b],\mathbb{R})$ corresponding to two different parameter values $\lambda = \lambda_1$ and $\lambda = \lambda_2$ are orthogonal i.e.,

$$\langle y_1, y_2 \rangle = \int_a^b y_1(x) y_2(x) w(x) \ dx = 0,$$

if

- 1. y_1 and y_2 satisfy the homogeneous boundary conditions $R_1(y)=0=R_2(y)$ i.e., λ_1,λ_2 are eigenvalues corresponding to eigenfunctions y_1,y_2 of the Sturm-Liouville eigenvalue problem, or
- 2. the coefficient function p(x) fulfills the condition p(a) = p(b) = 0.

1

Expansion with Eigenfunctions

Proposition: (Sequence of Eigenvalues and Oscillation of Eigenfunctions)
Let a Sturm-Liouville eigenvalue problem with boundary conditions be given:

 $L[y] + \lambda wy = 0, R_1(y) = \alpha_1 y(a) + \beta_1 y'(a) = 0 = \alpha_1 y(b) + \beta_2 y'(b) = R_2(y),$

with p(x)>0 and w(x)>0. Then the eigenvalues of this eigenvalue problem are easily computed and form an infinite sequence of real values $\lambda_1 < \lambda_2 < \cdots$, tending towards ∞ . Each eigenfunction corresponding to λ_n has exactly n roots in [a,b[

Motivation: (Clamped Membran Bessel's differential equations

 $-L[y] = -(\rho y')' + \frac{n^2}{-}y = \omega^2 \rho y, \quad y(a) = y(b) = 0$

represents the oscillation of a (ring-shaped) membrane, fixed (clamped) at the boundary, where a is the inner radius and b the outer radius and ρ a material

- According to the Proposition there is for each $n\in\mathbb{N}$ a sequence of eigenvalues
- \bullet ω_k are the eigen frequencies of the membrane
- k is the number of the wave maxima in radial direct

Proposition: (Expansion)

Let $(y_n(x))$ be a sequence of normalized eigenfunctions, corresponding to eigenvalues λ_n of the eigenvalue problem

$$-L[y]=\omega wy, R_1(y)=0=R_2(y)$$

with coefficient function p(x)>0 and weight function w(x)>0 on [a,b]. Thus, it holds:

$$\langle y_k, y_j \rangle = \delta_{kj}$$

Then each continuously differentiable function f, satisfying the boundary conditions of the eigenvalue problem, can be represented as function series

$$f(x) = \sum_{n=1}^{\infty} \langle f, y_n \rangle y_n(x).$$

The series converges in $\left[a,b\right]$ uniformly and absolutely.

Proposition: (Sequence of Eigenvalues and Oscillation of Eigenfunctions) Let a Sturm-Liouville eigenvalue problem with boundary conditions be given:

$$L[y] + \lambda wy = 0, R_1(y) = \alpha_1 y(a) + \beta_1 y'(a) = 0 = \alpha_1 y(b) + \beta_2 y'(b) = R_2(y),$$

with p(x)>0 and w(x)>0. Then the eigenvalues of this eigenvalue problem are easily computed and form an infinite sequence of real values $\lambda_1<\lambda_2<\cdots$, tending towards ∞ . Each eigenfunction corresponding to λ_n has exactly n roots in a,b.

Motivation: (Clamped Membrane)

Bessel's differential equations

$$-L[y] = -(\rho y')' + \frac{n^2}{\rho}y = \omega^2 \rho y, \quad y(a) = y(b) = 0$$

represents the oscillation of a (ring-shaped) membrane, fixed (clamped) at the boundary, where a is the inner radius and b the outer radius and ρ a material property.

- According to the Proposition there is for each $n \in \mathbb{N}$ a sequence of eigenvalues $\omega_0^2 < \omega_1^2 < \cdot$ with $\omega_k^2 \to \infty$ $(k \to \infty)$.
- ullet ω_k are the eigen frequencies of the membrane.
- ullet is the number of the wave maxima in radial direction.

Idea: (Expansion by Eigenfunctions)

• Due to the orthogonality relation of eigenfunctions the (solution) functions can be represented by eigenfunction series with suitable boundary conditions!

Proposition: (Expansion)

Let $(y_n(x))$ be a sequence of normalized eigenfunctions, corresponding to eigenvalues λ_n of the eigenvalue problem

$$-L[y] = \omega wy, R_1(y) = 0 = R_2(y)$$

with coefficient function p(x) > 0 and weight function w(x) > 0 on [a, b]. Thus, it holds:

$$\langle y_k, y_j \rangle = \delta_{kj}.$$

Then each continuously differentiable function f, satisfying the boundary conditions of the eigenvalue problem, can be represented as function series

$$f(x) = \sum_{n=1}^{\infty} \langle f, y_n \rangle y_n(x).$$

The series converges in [a, b] uniformly and absolutely.

2

Non-Linear ODEs

 $\bullet\,$ The equation describing the motion of a pendulum is given by

• For small displacements φ it holds $\sin \varphi \approx \varphi$.

One obtains an approximate linear ODE

 $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, t),$ with $\mathbf{x}(t) = (x_1(t), \dots, x_n(t))^\top$ and $\mathbf{F}(\mathbf{x}, t) = (F_1(\mathbf{x}, t), \dots, F_n(\mathbf{x}, t))^\top$, is called dynamical System.

The space of solution curves $\mathbf{x}(t)$ is called phase space and the solution curves phase

of n equations of first order: $\bullet \text{ Let: } y^{(n)} = f(y,y',y'',\ldots,y^{(n-1)},t).$ $\bullet \text{ Introduce: } x_1(t) = y(t), x_2(t) = y'(t),\ldots,x_n(t) = y^{(n-1)}(t).$ $\bullet \text{ The dynamical system } x = F(x,t) \text{ with }$

Remark: (Initial Value Problem) For a dynamical system $\dot{\mathbf{x}}=\mathbf{F}(\mathbf{x},t)$ let the initial condition

 $\mathbf{x}(t_0) = \mathbf{x}_0$

Proposition: (Existence and Uniqueness of Solution of an Initial Value Problem)
Let:

- Functions F_1, \dots, F_n be partially integrable for x_1, \dots, x_n .
- Partial Derivatives be continuous on a rectangular domain $B \subset \mathbb{R}^{n+1}$.
- ullet Point (\mathbf{x}_0,t_0) be located in the interior of B.

Then there is an interval $]t_0-h,t_0+h[$, in which a unique solution $\mathbf{x}(t)$ of the dynamical system $\dot{\mathbf{x}}=\mathbf{F}(\mathbf{x},t)$ satisfying $\mathbf{x}(t_0)=\mathbf{x}_0$ exists.

 $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$

Motivation: (Pendulum)

• The equation describing the motion of a pendulum is given by

$$\ddot{\varphi} + k\sin\varphi = 0.$$

- Observation: this equation is non-linear!
- For small displacements φ it holds $\sin \varphi \approx \varphi$.
- One obtains an approximate linear ODE

$$\ddot{\varphi} + k\varphi = 0.$$

Definition: (Dynamical System)

Consider the mapping

$$\mathbf{F}: \mathbb{R}^{n+1} \to \mathbb{R}^n \quad \text{und} \quad \mathbf{x}: \mathbb{R} \to \mathbb{R}^n,$$

x differenciable. The system of differential equations

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, t),$$

with $\mathbf{x}(t) = (x_1(t), \dots, x_n(t))^{\top}$ and $\mathbf{F}(\mathbf{x}, t) = (F_1(\mathbf{x}, t), \dots, F_n(\mathbf{x}, t))^{\top}$, is called dynamical System.

The space of solution curves $\mathbf{x}(t)$ is called phase space and the solution curves phase curves.

Remark: (System of first Order)

In analogy to the linear case, an ODE of $n^{\rm th}$ order can be reformulated as a system of n equations of first order:

- Let: $y^{(n)} = f(y, y', y'', \dots, y^{(n-1)}, t)$.
- Introduce: $x_1(t) = y(t)$, $x_2(t) = y'(t)$, ..., $x_n(t) = y^{(n-1)}(t)$.
- ullet The dynamical system $\dot{f x}={f F}({f x},t)$ with

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_n \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ x_n \\ f(x_1, x_2, \dots, x_n, t) \end{pmatrix} =: \mathbf{F}(x_1, \dots, x_n, t)$$

is equivalent to the ODE of n^{th} order above.

Example: The system

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -k\sin x_1 \end{pmatrix}$$

is equivalent to the ODE of 2nd order

$$\ddot{\varphi} + k \sin \varphi = 0.$$

Remark: (Initial Value Problem)

For a dynamical system $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x},t)$ let the initial condition

$$\mathbf{x}(t_0) = \mathbf{x}_0$$

be given. We obtain an initial value problem (IVP).

Proposition: (Existence and Uniqueness of Solution of an Initial Value Problem) Let:

- Functions F_1, \ldots, F_n be partially integrable for x_1, \ldots, x_n .
- Partial Derivatives be continuous on a rectangular domain $B \subset \mathbb{R}^{n+1}$.
- Point (\mathbf{x}_0, t_0) be located in the interior of B.

Then there is an interval $]t_0 - h, t_0 + h[$, in which a unique solution $\mathbf{x}(t)$ of the dynamical system $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, t)$ satisfying $\mathbf{x}(t_0) = \mathbf{x}_0$ exists.

Definition: (Autonomous System)

If the mapping ${f F}$ of the dynamical system does not depend on t i.e.,

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$$

with $\mathbf{F}:\mathbb{R}^n \to \mathbb{R}^n$, then the system is called autonomous system.

