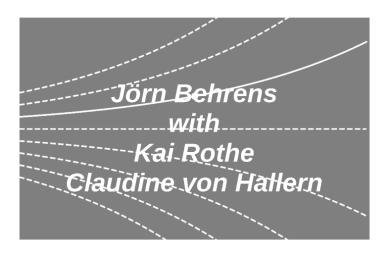
Differential Equations I



Autonomous Systems and Stability

Chapter 6.14

Recapitulation

Definition: (Dynamical System) Consider the mapping

 $\mathbf{F}: \mathbb{R}^{n+1} \to \mathbb{R}^n \quad \text{und} \quad \mathbf{x}: \mathbb{R} \to \mathbb{R}^n,$

 $\ensuremath{\mathbf{x}}$ differentiable. The system of differential equations

 $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, t),$

with $\mathbf{x}(t)=(x_1(t),\dots,x_n(t))^{\top}$ and $\mathbf{F}(\mathbf{x},t)=(F_1(\mathbf{x},t),\dots,F_n(\mathbf{x},t))^{\top}$, is called

dynamical System. The space of solution curves $\mathbf{x}(t)$ is called phase space and the solution curves phase

Remark: (System of first Order) In analogy to the linear case, an ODE of $n^{\rm th}$ order can be reformulated as a system of n equations of first order:

- $\bullet \ \ \mathsf{Let} \colon y^{(n)} = f(y,y',y'',\dots,y^{(n-1)},t).$
- $\bullet \ \ {\rm Introduce} : \ x_1(t) = y(t), \ x_2(t) = y'(t), \ \ldots, \ x_n(t) = y^{(n-1)}(t).$

Definition: (Autonomous System)

If the mapping ${f F}$ of the dynamical system does not depend on t i.e.,

with $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$, then the system is called autonomous system.

Definition: (Dynamical System)

Consider the mapping

$$\mathbf{F}: \mathbb{R}^{n+1} \to \mathbb{R}^n \quad \text{und} \quad \mathbf{x}: \mathbb{R} \to \mathbb{R}^n,$$

x differenciable. The system of differential equations

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, t),$$

with $\mathbf{x}(t) = (x_1(t), \dots, x_n(t))^{\top}$ and $\mathbf{F}(\mathbf{x}, t) = (F_1(\mathbf{x}, t), \dots, F_n(\mathbf{x}, t))^{\top}$, is called dynamical System.

The space of solution curves $\mathbf{x}(t)$ is called phase space and the solution curves phase curves.

Remark: (System of first Order)

In analogy to the linear case, an ODE of $n^{\rm th}$ order can be reformulated as a system of n equations of first order:

- Let: $y^{(n)} = f(y, y', y'', \dots, y^{(n-1)}, t)$.
- Introduce: $x_1(t) = y(t)$, $x_2(t) = y'(t)$, ..., $x_n(t) = y^{(n-1)}(t)$.
- The dynamical system $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, t)$ with

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_n \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ x_n \\ f(x_1, x_2, \dots, x_n, t) \end{pmatrix} =: \mathbf{F}(x_1, \dots, x_n, t)$$

is equivalent to the ODE of n^{th} order above.

Definition: (Autonomous System)

If the mapping ${f F}$ of the dynamical system does not depend on t i.e.,

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$$

with $\mathbf{F}:\mathbb{R}^n \to \mathbb{R}^n$, then the system is called autonomous system.

Stability of Linear **Autonomous Systems**

Definition: (Equilibrium State) If x=F(x) with $F:\mathbb{R}^n\to\mathbb{R}^n$ is an autonomous system, then values $x_0\in\mathbb{R}^n$ with the property

with the property $F(x_0)=0$ are called equilibrium or equilibrium state of the system. These points are also called critical stationary or when the property of the system of the property of the system.

- Consider the autonomous system $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$. Let $A \in \mathbb{R}^{n \times n}$ be a matrix and set $\mathbf{F} = A$.

- Let A ∈ K⁻⁻ be a means M

 Then X₀ = 0 is an equilibrium.

 If A has the n pair-wise distinct eigenvalues λ₀, then the general solution of the autonomous system is

xicrosus system is $\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{e}_1 + \dots + c_n e^{\lambda_n t} \mathbf{e}_n.$

- Proposition (Stability of Liver Advances Systems). The optimism $x_0 = 0$ lives authenticon System $x_1 = Y(x) Ax$ is 1. Interpretation of x_1 and inputs and x_2 as a region and x_3 and x_4 . It is approximate of x_4 has positive real part and the agreement of the proposition of x_4 has positive real part and the agreement x_4 and x_4 are the proposition of x_4 has positive real part of the proposition of x_4 and x_4 are the proposition of x_4 has positive real part on them is an argumentation of the proposition of x_4 and x_4 are the proposition of x_4 and x_4

Definition: (Properties of Equilibria) Let x_0 be equilibrium of the autonomous system $\hat{x} = P(x)$. Then x_0 is called 1. attractive, if solutions x(t), starting close to x_0 converge towards the equilibrium:

- - $\exists \delta > 0: \lim_{t \to \infty} \mathbf{x}(t) = \mathbf{x}_{\theta}, \quad \forall \mathbf{x}(t) \text{ with } |\mathbf{x}(0) \mathbf{x}_0| < \delta,$
- $\forall \epsilon>0 \ \exists \delta>0 \ \text{with} \ |\mathbf{x}(0)-\mathbf{x}_0|<\delta \ \Rightarrow \ |\mathbf{x}(t)-\mathbf{x}_0|<\epsilon \ \forall t>0,$
- 3. asymptotically stable, if attractive and stable, $1 \cdot \operatorname{supple}(X,Y) = 0 \cdot \operatorname{supple}(X,Y)$

Definition: (Equilibrium State)

If $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ with $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ is an autonomous system, then values $\mathbf{x}_0 \in \mathbb{R}^n$ with the property

$$\mathbf{F}(\mathbf{x}_0) = \mathbf{0}$$

are called equilibrium or equilibrium state of the system.

These points are also called *critical*, *stationary* or *singular* points.

Remark: (Equilibrium)

Obviously $\mathbf{x}(t) = \mathbf{x}_0$ is a constant, time-independent solution of the autonomous system, for which the system rests in equilibrium.

Fundamental Question: (Stability)

Does a phase curve, starting close to an equilibrium x_0 , remain in its vicinity?

Remark: (Linear Autonomous System)

- ullet Consider the autonomous system $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$.
- Let $A \in \mathbb{R}^{n \times n}$ be a matrix and set $\mathbf{F} = A$.
- Then $\mathbf{x}_0 = \mathbf{0}$ is an equilibrium.
- If A has the n pair-wise distinct eigenvalues λ_k , then the general solution of the autonomous system is

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{e}_1 + \dots + c_n e^{\lambda_n t} \mathbf{e}_n,$$

with e_k the eigenvectors corresponding to λ_k .

Definition: (Properties of Equilibria)

Let \mathbf{x}_0 be equilibrium of the autonomous system $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$. Then \mathbf{x}_0 is called

1. attractive, if solutions $\mathbf{x}(t)$, starting close to \mathbf{x}_0 converge towards the equilibrium:

$$\exists \delta > 0: \lim_{t \to \infty} \mathbf{x}(t) = \mathbf{x}_0, \quad \forall \mathbf{x}(t) \text{ with } |\mathbf{x}(0) - \mathbf{x}_0| < \delta,$$

2. stable, if solutions $\mathbf{x}(t)$, starting close to \mathbf{x}_0 remain in its vicinity:

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \text{with} \; |\mathbf{x}(0) - \mathbf{x}_0| < \delta \; \Rightarrow \; |\mathbf{x}(t) - \mathbf{x}_0| < \epsilon \; \forall t > 0,$$

- 3. asymptotically stable, if attractive and stable,
- 4. unstable, if there are solutions that although started close to \mathbf{x}_0 deviate away from equilibrium:

$$\exists \epsilon > 0 \text{ and } t_1 > 0: \forall \delta > 0 \text{ with } |\mathbf{x}(0) - \mathbf{x}_0| < \delta \ \Rightarrow \ |\mathbf{x}(t) - \mathbf{x}_0| > \epsilon, \ t \geq t_1.$$

Proposition: (Stability of Linear Autonomous Systems) The equilibrium \mathbf{x}_0 of a linear autonomous system $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}) = A\mathbf{x}$ is

- 1. asymptotically stable, if all eigenvalues of A have negative real parts,
- 2. stable, if no eigenvalue of A has positive real part and for eigenvalues with real part zero we have: geometric = algebraic multiplicity.
- 3. unstable, if an eigenvalue of A has positive real part or there is an eigenvalue with real part zero and geometric < algebraic multiplicity.

Stability of non-linear autonomous Systems

Proposition: (Stability of Non-Linear Autonomous Systems) The equilibrium \mathbf{x}_0 of a non-linear autonomous System $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ is

- 1. asymptotically stable, if all eigenvalues of the derivative matrix $\mathbf{F}'(\mathbf{x}_0)$ have negative real parts,
- 2. unstable, if at least one eigenvalue of $\mathbf{F}'(\mathbf{x}_0)$ has positive real part.

Motivation:

- Most interesting problems are non-linear.
- Since we study the behavior in a neighborhood of an equlibrium, we may linearize.
- Linear Approximation (Taylor-Expansion):

$$\mathbf{L}\mathbf{x} = \mathbf{F}(\mathbf{x}_0) + \mathbf{F}'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0),$$

with \mathbf{F}' matrix derivative of \mathbf{F} .

• If F sufficiently smooth, we see

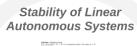
$$\mathbf{F}(\mathbf{x}) pprox \mathbf{F}(\mathbf{x}_0) + \mathbf{F}'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0).$$

• If x_0 is an equilibrium, we see

$$\mathbf{F}(\mathbf{x}) \approx \mathbf{F}'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0).$$

Proposition: (Stability of Non-Linear Autonomous Systems) The equilibrium \mathbf{x}_0 of a non-linear autonomous System $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ is

- 1. asymptotically stable, if all eigenvalues of the derivative matrix $\mathbf{F}'(\mathbf{x}_0)$ have negative real parts,
- 2. unstable, if at least one eigenvalue of $\mathbf{F}'(\mathbf{x}_0)$ has positive real part.



Properties (Section II and Annual Antonia)

The control of the Annual An

Stability of non-linear autonomous Systems

An included and a second and a

Proposition (Holding of Non-Latur Aphanomic States)
Throughfront in a force data understand Systems (Holding of
Signific Annies Annies Annies Annies States (Holding of
Signific Annies Annies

Differential Equations I

