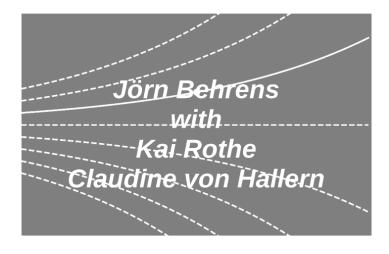
Differential Equations I



Numerical Methods

Chapter 6.10

Introduction

Motivation:

- By now we know a number of analytical solution techniques. What if the ODE is too complicated?
- With the mathematical tool set, we may be able to state the solvability, but we may not be able to actually solve.
- Idea: Find an (approximate) solution by means of numerical methods!

Consider ODE of 1st order:

y'(x) = f(x,y(x))

- Let initial conditions be $y(x_0) = y_0 \label{eq:y0}$

- Observation: In (x_0,y_0) the slope $y'(x_0)=F(x_0,y_0)$ of the solution function y is known!

Idea: Approximate solution by means of the tangent line (linearization).

Method: (Euler's Integration Method)

Consider the initial value problem of 1st order:

 $x_k = x_0 + kh$ (k = 1, 2, ...).

ullet Then one obtains an approximation y_k to the exakt solution values $y(x_k)$ by $y_{k+1} = y_k + hf(x_k, y_k), \quad k = 0, 1, 2, ...$

This method is called Euler's integration method.

Motivation:

- By now we know a number of analytical solution techniques. What if the ODE is too complicated?
- With the mathematical tool set, we may be able to state the solvability, but we may not be able to actually solve.
- Idea: Find an (approximate) solution by means of numerical methods!

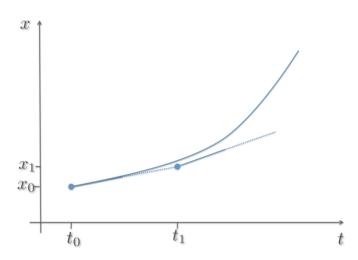
Idea:

• Consider ODE of 1st order:

$$y'(x) = f(x, y(x))$$

• Let initial conditions be

$$y(x_0) = y_0$$



- Observation: In (x_0, y_0) the slope $y'(x_0) = F(x_0, y_0)$ of the solution function y is known!
- Idea: Approximate solution by means of the tangent line (linearization).

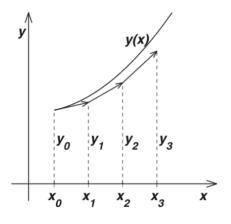
Method: (Euler's Integration Method)

• Consider the initial value problem of 1st order:

$$y'(x) = f(x, y(x)), \quad y(x_0) = y_0$$

• Define equidistant nodes with increment *h*:

$$x_k = x_0 + kh$$
 $(k = 1, 2, ...).$



ullet Then one obtains an approximation y_k to the exakt solution values $y(x_k)$ by

$$y_{k+1} = y_k + hf(x_k, y_k), \quad k = 0, 1, 2, \dots$$

• This method is called Euler's integration method.

Other names: polygon method, Euler's method.

Remarks:

- ullet Euler's method can only be used with very small increments h.
- The method is the simplest *explicit one-step method*.

Discretization Error

Use a general (implicit) form of the calculation rule

$y_{k+1} = y_k + h\Phi(x_k, y_k, y_{k+1}, h).$

- \bullet If Φ depends only on x_k,y_k and h, then an explicit rule is given.
- If Φ also depends on y_{k+1}, then in general in each (time) step a non-linear equation needs to be solved (implicitly).

 $d_{k+1} := y(x_{k+1}) - y(x_k) - h\Phi(x_k, y(x_k), y(x_{k+1}), h).$

$$\begin{split} \textbf{Proposition:} & \text{ (Estimation of the Gobal Discretization Error)} \\ \textbf{For the global error} & g_a \text{ at a fixed position } x_n = x_0 + nh \text{ we have} \\ \textbf{\bullet} & \textbf{For an explicit one-step method:} \end{split}$$

 $|g_n| \le \frac{D}{hL} \left(e^{nkL} - 1\right) \le \frac{D}{hL}e^{nkL}.$

 $|g_n| \le \frac{D}{hK(1 - hL)} (e^{nhL} - 1) \le \frac{D}{hK(1 - hL)} e^{nhL}.$

Here D is an upper bound for the local discretization error, L a (Lipschitz-) constant depending on the rule Φ_r and K a constant.

Definition: (Order of Error) A one-step method $y_{k+1}=y_k+h\Phi(x_k,y_k,y_{k+1},h)$ has an order of error p, if for the lokal discretization error d_k it holds:

 $\max_{1 \leq k \leq n} |d_k| \leq D = \mathrm{const.} \cdot h^{p+1} = \mathcal{O}(h^{p+1}).$

Notation:

• Use a general (implicit) form of the calculation rule

$$y_{k+1} = y_k + h\Phi(x_k, y_k, y_{k+1}, h).$$

- ullet If Φ depends only on x_k,y_k and h, then an *explicit* rule is given.
- If Φ also depends on y_{k+1} , then in general in each (time) step a non-linear equation needs to be solved (*implicitly*).
- Example: Euler's method uses $\Phi(x_k, y_k, y_{k+1}, h) = f(x_k, y_k)$.

Definition: (Lokal Discretization Error)

The lokal discretization error at x_{k+1} is defined by

$$d_{k+1} := y(x_{k+1}) - y(x_k) - h\Phi(x_k, y(x_k), y(x_{k+1}), h).$$

Remark: This is the error compared to the exact solution, generated within one sigle step $x_k \to x_{k+1}$.

Definition: (Global Discretization Error)

The global discretization error at x_k is defined by

$$g_k := y(x_k) - y_k.$$

Remark: This is the error between the exact solution $y(x_k)$ and and the numerically computed solution y_k .

Proposition: (Estimation of the Global Discretization Error) For the global error g_n at a fixed position $x_n = x_0 + nh$ we have

• For an explicit one-step method:

$$|g_n| \le \frac{D}{hL} \left(e^{nhL} - 1 \right) \le \frac{D}{hL} e^{nhL}.$$

• For an implicit method:

$$|g_n| \le \frac{D}{hK(1-hL)} \left(e^{nhL} - 1\right) \le \frac{D}{hK(1-hL)} e^{nhL}.$$

Here D is an upper bound for the local discretization error, L a (Lipschitz-) constant depending on the rule Φ , and K a constant.

Remarks:

- For solution functions with suitable properties (e.g. two times cont. differentiable) one shows $D \leq \frac{1}{2}h^2M$, where M is an upper bound for y''.
- For Euler's method this yields:

$$|g_n| \le h \frac{M}{2L} e^{L(x_n - x_0)} =: hC, \quad C \in \mathbb{R}.$$

• Interpretation: For fixed position x_n and decreasing increment $h = \frac{x_n - x_0}{n}$ (therefore increasing n) the global discretization error decreases proportional to the increment.

Definition: (Order of Error)

A one-step method $y_{k+1} = y_k + h\Phi(x_k, y_k, y_{k+1}, h)$ has an order of error p, if for the lokal discretization error d_k it holds:

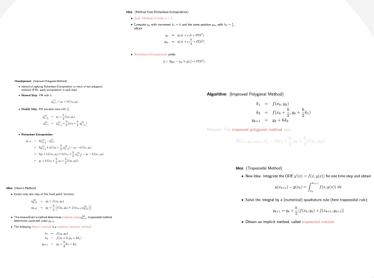
$$\max_{1 \le k \le n} |d_k| \le D = \text{const.} \cdot h^{p+1} = \mathcal{O}(h^{p+1}).$$

Corollary:

The global discretization error g_n of an explicit method with order p is bounded by

$$|g_k| \le \frac{\text{const.}}{L} e^{nhL} \cdot h^p = \mathcal{O}(h^p).$$

Trapeziodal Method



Since the implicit solution often involves a non-lineare problem, solve by fixed point iteration:

$$\begin{array}{rcl} y_{k+1}^{(0)} & = & y_k + f(x_k, y_k) \\ y_{k+1}^{(s+1)} & = & y_k + \frac{h}{2} \left[f(x_k, y_k) + f(x_{k+1}, y_{k+1}^{(s)}) \right] & s = 0, 1, 2, \dots \end{array}$$

Obtain convergence, if |f(x, y) − f(x, y*)| ≤ L|y − y*| (Lipschitz continuous) and ^{LL}/₂ < 1 (Banach's Fixed Point Theorem).

Idea: (Method from Richardson-Extrapolation)

- Goal: Method of order p > 1.
- Compute y_n with increment $h_1=h$ and the same position y_{2n} with $h_2=\frac{h}{2}$, obtain

$$y_n \approx y(x) + c_1 h + \mathcal{O}(h^2)$$

 $y_{2n} \approx y(x) + c_1 \frac{h}{2} + \mathcal{O}(h^2)$

Richardson-Extrapolation yields

$$\tilde{y} = 2y_{2n} - y_n \approx y(x) + \mathcal{O}(h^2).$$

Development: (Improved Polygonal Method)

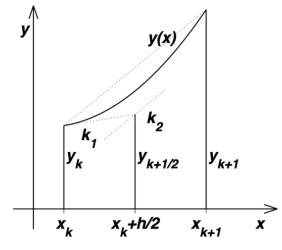
- Instead of applying Richardson-Extrapolation to result of two polygonal methods (PM), apply extrapolation in each step!
- Normal Step: PM with h:

$$y_{k+1}^{(1)} = y_k + h f(x_k, y_k)$$

• **Double Step**: PM executed twice with $\frac{h}{2}$:

$$y_{k+\frac{1}{2}}^{(2)} = y_k + \frac{h}{2} f(x_k, y_k)$$

$$y_{k+1}^{(2)} = y_{k+\frac{1}{2}}^{(2)} + \frac{h}{2} f(x_k + \frac{h}{2}, y_{k+\frac{1}{2}}^{(2)})$$



• Richardson-Extrapolation:

$$y_{k+1} = 2y_{k+\frac{1}{2}}^{(2)} - y_{k+1}^{(1)}$$

$$= 2y_{k+\frac{1}{2}}^{(2)} + hf(x_k + \frac{h}{2}, y_{k+\frac{1}{2}}^{(2)}) - y_k - hf(x_k, y_k)$$

$$= 2y_k + hf(x_k, y_k) + hf(x_k + \frac{h}{2}, y_{k+\frac{1}{2}}^{(2)}) - y_k - hf(x_k, y_k)$$

$$= y_k + hf(x_k + \frac{h}{2}, y_k + \frac{h}{2}f(x_k, y_k)).$$

Algorithm: (Improved Polygonal Method)

$$k_1 = f(x_k, y_k)$$
 $k_2 = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}k_1)$
 $y_{k+1} = y_k + hk_2$

Remark: The improved polygonal method uses

$$\Phi(x_k, y_k, y_{k+1}, h) = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}f(x_k, y_k)).$$

Idea: (Trapezoidal Method)

ullet New Idea: Integrate the ODE y'(x)=f(x,y(x)) for one time step and obtain

$$y(x_{k+1}) - y(x_k) = \int_{x_k}^{x_{k+1}} f(x, y(x)) dx$$

• Solve the integral by a (numerical) quadrature rule (here trapezoidal rule):

$$y_{k+1} = y_k + \frac{h}{2} [f(x_k, y_k) + f(x_{k+1}, y_{k+1})]$$

• Obtain an implicit method, called trapezoidal method.

Remarks: (Trapezoidal Method)

 Since the implicit solution often involves a non-lineare problem, solve by fixed point iteration:

$$y_{k+1}^{(0)} = y_k + f(x_k, y_k)$$

$$y_{k+1}^{(s+1)} = y_k + \frac{h}{2} \left[f(x_k, y_k) + f(x_{k+1}, y_{k+1}^{(s)}) \right] \quad s = 0, 1, 2, \dots$$

• Obtain convergence, if $|f(x,y)-f(x,y^*)| \leq L|y-y^*|$ (Lipschitz continuous) and $\frac{hL}{2} < 1$ (Banach's Fixed Point Theorem).

Idea: (Heun's Method)

• Iterate only one step of the fixed point iteration:

$$y_{k+1}^{(p)} = y_k + f(x_k, y_k)$$

$$y_{k+1} = y_k + \frac{h}{2} \left[f(x_k, y_k) + f(x_{k+1}, y_{k+1}^{(p)}) \right].$$

- This means Euler's method determines predictor value $y_{k+1}^{(p)}$, trapezoidal method determines corrected value y_{k+1} .
- The following Heun's method is a predictor-corrector method:

$$k_1 = f(x_k, y_k)$$
 $k_2 = f(x_k + h, y_k + hk_1)$
 $y_{k+1} = y_k + \frac{h}{2}[k_1 + k_2]$

Runge-Kutta Methods

```
equivalence of the control of Manage Nation to receive the desired 2 of the description of Manage Nation to reclaved of higher order we start from the integral equation y(\alpha_{k+1})-y(\alpha_k)-\int_{-\infty}^{\infty} f(x_k) g(x_k) dx
• For subsing the integral are a general quotestore role with 3 nodes in the integral [\alpha_{k+1}, \beta_k]. This yields the assets: y_{k+1}=y_k+by(\int_{\mathbb{R}^2}(b_k)+cy(f_k,y(x_k))+cy(f_k,y(x_k))
• Note let c_1=y_k+c_2=1, c_k for the nodes.

Determination of Nodes and Values:
• Use the nodes:
(x_1=x_k, \ c_2=x_k+a_k, \ c_3=x_k+a_k, \ 0 \le a_{k+1}x_k \le b_{k+1}x_k \le b_
```

Preliminary Remarks:

- Heun's method and the improved polygonal method are both examples of explicit two-stage Runge-Kutta methods of order 2.
- For the description of Runge-Kutta methods of higher order we start from the integral equation

$$y(x_{k+1}) - y(x_k) = \int_{x_k}^{x_{k+1}} f(x, y(x)) dx.$$

• For solving the integral use a general quadrature rule with 3 nodes in the interval $[x_k, x_{k+1}]$. This yields the ansatz:

$$y_{k+1} = y_k + h[c_1 f(\xi_1, y(\xi_1)) + c_2 f(\xi_2, y(\xi_2)) + c_3 f(\xi_3, y(\xi_3))].$$

• Here let $c_1 + c_2 + c_3 = 1$, ξ_i be the nodes.

Determination of Nodes and Values:

Use the nodes

$$\xi_1 = x_k, \quad \xi_2 = x_k + a_2 h, \quad \xi_3 = x_k + a_3 h, \quad 0 < a_2, a_3 \le 1.$$

- Since $\xi_1 = x_k$ we have $y(\xi_1) = y_k$.
- For $y(\xi_2)$ and $y(\xi_3)$ utilize predictor approach:

$$y(\xi_2): y_2^* = y_k + hb_{21}f(x_k, y_k)$$

 $y(\xi_3): y_3^* = y_k + hb_{31}f(x_k, y_k) + hb_{32}f(x_k + a_2h, y_2^*).$

• One obtains parameters $a_1, a_2, b_{21}, b_{31}, b_{32}, c_1, c_2, c_3$, to be chosen such that an optimal order of error is achieved.

Algorithm: (3-Stage Runge-Kutta Method)

$$k_1 = f(x_k, y_k)$$

$$k_2 = f(x_k + a_2h, y_k + hb_{21}k_1)$$

$$k_3 = f(x_k + a_3h, y_k + h(b_{31}k_1 + b_{32}k_2))$$

$$y_{k+1} = y_k + h[c_1k_1 + c_2k_2 + c_3k_3].$$

Example: Heun's Method of 3rd order is given by the following parameters:

$$a_1 = \frac{1}{3}, \ a_2 = \frac{2}{3}, \ c_1 = \frac{1}{4}, \ c_2 = 0, \ c_3 = \frac{3}{4}, b_{32} = \frac{2}{3}, b_{31} = a_3 - b_{32} = 0.$$

