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Introduction

Motivation:

e By now we know a number of analytical solution techniques. What if the
ODE is too complicated?

e With the mathematical tool set, we may be able to state the solvability, but
we may not be able to actually solve.

 Idea: Find an (approximate) solution by means of numerical methods!

Mathod: (Eler's Integration Method)
ldea: « Consider the initil value problem of 1 order 1

« Consider ODE of 1* order: (5 = flz.p(@), vizo) =m0

o (z) = =)

« Define cquidistant nodes with increment h:
« Let initial conditions be n=mebh (k=120 -
ulzo) =
« Observation: In (70, ) the slope y/(ze) = Fixo, ) of the solution function @ Then ome obtains an approximation y to the exakt solution values y(z,) by
w is known! Weer = we+ M (Enm), k=012,
« Idea: Approximate solution by means of the tangent line (linearization) o This method is called Euler's integrstion m




Motivation:

e By now we know a number of analytical solution techniques. What if the
ODE is too complicated?

e With the mathematical tool set, we may be able to state the solvability, but
we may not be able to actually solve.

e |dea: Find an (approximate) solution by means of numerical methods!



X
Idea:

e Consider ODE of 15t order:

Y (z) = f(z,y(z))

X1+

e Let initial conditions be Tor

y(xo) = Yo 1y 7

e Observation: In (xg, yo) the slope ¥/ (zg) = F(xo, yo) of the solution function
y is known!

e |dea: Approximate solution by means of the tangent line (linearization).




Method: (Euler's Integration Method)

e Consider the initial value problem of 1%t order: g
y'(z) = f(z,y(z), y(z0) =1yo
e Define equidistant nodes with increment h: iy" Ey’ %"2 Ey3
xxr =x9+ kh (k=1,2,...). X X % %

e Then one obtains an approximation y; to the exakt solution values y(x) by
Yk+1 :yk—l_hf(mk)yk)a k:07172,"'

e This method is called Euler’s integration method.




Remarks:
e Euler's method can only be used with very small increments h.

e The method is the simplest explicit one-step method.




Discretization Error

Notation
 Use a general (implicit) form of the calculation rule

o If # depends only on xy, s and /i, then an explicit rule is given.

o If & also depends on g1, then in general in each (time) step a non-linear
equation needs to be solved (impiicitly).

Proposition; (Estimation of the Gobal Discretization Evver)
For the global error g, at & fxed pokition 3, = ru -+ ki we have

 For an xplct cm-step mathod:

on Errr)
3t xiy is defined by
o 1= ptznas) = i) — W(en, vlm), wzwan ) h)-

D iy Dt
ol S 7 (-1 <
o For an implci method

D me
005 i =V S o a

‘depending on the rule &, 3nd K 3 constant.

Definition: (Order of Error)
A one-step method iyt = yic + hb(ra, vk, ka1, i) has an order of o
the lokal discretization error d it holds:

max |dy| € D = const. - W = O(WH),

e




Notation:

e Use a general (implicit) form of the calculation rule
Yk+1 = Yk + h®(Tk, Yk, Yk+1, h).

e |f ® depends only on zg,yx and h, then an explicit rule is given.

e If ® also depends on yx1, then in general in each (time) step a non-linear
equation needs to be solved (implicitly).
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Definition: (Lokal Discretization Error)
The lokal discretization error at xg41 is defined by

div1 = Y(Tr+1) — y(zk) — h®(zk, y(Tk), Y(Tkt1), ).

Definition: (Global Discretization Error)
The global discretization error at xj is defined by

gk ‘= y(wk) — Yk-
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Proposition: (Estimation of the Global Discretization Error)
For the global error g, at a fixed position x,, = x¢o + nh we have

e For an explicit one-step method:

D D
9] < 77 (¢ D= qze
e For an implicit method:
D D
n < nhlL _ 1 < nhL
901 < SR = AL (¢ ) < hK(—hL)©

Here D is an upper bound for the local discretization error, L a (Lipschitz-) constant
depending on the rule ®, and K a constant.
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Remarks:

e For solution functions with suitable properties (e.g. two times cont. differen-
tiable) one shows D < %th, where M is an upper bound for y”.

e For Euler's method this yields:

M
gn| < hieL(“’n—“’o) =:hC, CER.

e Interpretation: For fixed position z, and decreasing increment h = #n—%0
(therefore increasing n) the global discretization error decreases proportional
to the increment.

14.



Definition: (Order of Error)
A one-step method yx+1 = yx + h®(xk, Yk, Yk+1, h) has an order of error p, if for
the lokal discretization error di it holds:

max |dx| < D = const. - ”?TH = O(RPT).
1<k<n

Corollary:
The global discretization error g,, of an explicit method with order p is bounded by

const.

7 el . pP = O(hP).

91| <

16.



Trapeziodal Method
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Ideo: (Trapezoidsl Method)

* New idea () = flr.o(2)
p—
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siersi)=oten) = [ flosten d

Wh o= e Sl  Solve the integral by & (umerical) quadrature rule (bere trapezodl rule)
wo = e [ s
B

Tor = S Uenm) + oo o]

oo G o ‘» Obtain an implicit method, called 1135
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Remarks: (Trapezoidal Method)

 Since the implicit solution often involves 3 non-ls solve by fixed
point iteration:

Who= e Sl

o3 " o

Wi = v~+;[l(n‘m)u(n.‘.vﬁ,’,) =012,

‘» Obtain convergence, if | {(r, ) — f(x,y")| < Liy—y"| (Lipschitz continuous)
and % < 1 (Banach’s Fixed Point Theorem).
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Idea: (Method from Richardson-Extrapolation)

e Goal: Method of order p > 1.

e Compute y, with increment h; = h and the same position y2, with hy = %
obtain

Q

Yn y(z) + c1h + (’)(hz)

y(z) + clg + O(h?)

Q

Yon

e Richardson-Extrapolation yields

§ = 2Yan — Yn = y(x) + O(h?).
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Development: (Improved Polygonal Method)

e Instead of applying Richardson-Extrapolation to result of two polygonal

methods (PM), apply extrapolation in each step!
e Normal Step: PM with A:

(1)

Yri1 = Yk + hf(Tr, yx)

e Double Step: PM executed twice with 2
(2)
Yors

2
yl(chl

h
Yk + —f(l"k,yk)

e h (2
Yirs T 5 f(x +

2,yk+

1)

e Richardson-Extrapolation:

(1)

Yk+1 1 Yr+1

h
, + hf(xg +
2

2’9k+1)_yk — hf(zk, yk)

2yr + hf(zk, yx) + hf(zr + <

2

h
,yk+1)—yk—hf(37k,yk)

yk + hf(zr +

h h
=Yk + §f(wkayk))

2
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Algorithm: (Improved Polygonal Method)

kl — f(wka yk)
h h
ko = f($k+§,yk+ 5761)
Yk+1 = Yk + hko

improved polygonal method
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Idea: (Trapezoidal Method)

e New Idea: Integrate the ODE 3/(z) = f(x,y(x)) for one time step and obtain

Tk+41

y(@hin) — y(zx) = / f(z,y(2)) da

Tk

e Solve the integral by a (numerical) quadrature rule (here trapezoidal rule):

h
k1 =Yk + 5 f @k, k) + F(Trt1, Yrt1)]

e Obtain an implicit method, called trapezoidal method.

22.



Remarks: (Trapezoidal Method)

e Since the implicit solution often involves a non-lineare problem, solve by fixed
point iteration:

©)  _

Yre1 = Ykt f(Tk,Yk)
s h S
y,(C++11) = Uty [f(xkayk)+f(xk+17y;(€_zl)} s=0,1,2,...

e Obtain convergence, if | f(x,y) — f(z,y*)| < L|y—y*| (Lipschitz continuous)
and 2L < 1 (Banach’s Fixed Point Theorem).



Idea: (Heun's Method)

e |terate only one step of the fixed point iteration:
uh = uet floeu)
— E (p)
Ye+1 = Ykt 9 f(@r,yk) + f(Trt1,¥501) | -

e This means Euler's method determines predictor value y,g’le, trapezoidal method

determines corrected value yi1.

e The following Heun's method is a predictor-corrector method:

kl = f(xk) yk)
ke = f(xx+ h,yx + hk1)
h
Ykl = Yk + §[k1 + ko]

24,



unge-Kutta Methods

Prefeninary Remarks.
@ Meun's method and the improved palygonal method are both exampies of
cxpcit to-sage Furge-Kotts methds ofordee 2
intngral wuation

ow) =t = [ e

 For sohing the ntegral use 3 general quadrature rule with 3 odes in the
Intenal [ xu.]. This pieks the ansatz
et = 0+ e (6. 6)) + S (6,016 + eaf(. )]

@ Hore et 0 4.0y 4 03 = 1. & be the sodes

‘Determination of Nodes and Values:
* Use the sodes
b= G=nteh G=oseb
o Since £ = 2, wa have 5(63) =
© For 3] and p(8s) utdize predictor appeach:

sG55 =t Maflrew)
BE): B = ok Sl w) + Bbaf (e + 03,0

. By bt B 1,3, that
2 cptimal ceder of e i achived.

Algorithm: (3-Stage Runge-Kutta Method)

ko= floew)

ka S(@e +azh, i + hbarky)
ks Sz + agh, i + hibsiky + bxzkz))
Werr = yn+ hlerks + eaky + cakal.

Heun's Method of 3 order
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Preliminary Remarks:

e Heun's method and the improved polygonal method are both examples of
explicit two-stage Runge-Kutta methods of order 2.

e For the description of Runge-Kutta methods of higher order we start from the
integral equation

Tr+41

Y(@r1) — y(zk) = / f(z,y(z)) dx.

Tk

e For solving the integral use a general quadrature rule with 3 nodes in the
interval [xk,xx41]. This yields the ansatz:

Yk+1 = Yk + hler f(§1, (&) + caf(&2,y(82)) + caf (€3, y(63))].

e Herelet c; +c2 4+ c3 =1, & be the nodes.
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Determination of Nodes and Values:

e Use the nodes

&1 =1z, & =K+ ah, & =z + ash,

e Since & = xi we have y(&1) = yk.

e For y(&2) and y(&3) utilize predictor approach:

y(&2): ys = Yk +hbaf(zk,yr)
y(ﬁs) : y§ = Yk + hb31f(ka,yk) + hb32f($k; + aqh, y;)

e One obtains parameters a1, as, ba1, b31, b32, c1, C2, c3, to be chosen such that
an optimal order of error is achieved.
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Algorithm: (3-Stage Runge-Kutta Method)

Yk+1

f (@, yx)

f(xk + azh, yp + hba1k:)

f(zr + ash, yr + h(bs1k1 + bs2k2))
Yk + hlcik1 + coka + c3ks).

Heun's Method of 3" order
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