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Exercise 1) (3 points)
Compute the general solution of the following differential equation

y′(t) = cos(t) · 1
4y2(t) .

Solution
The differential equation is separable.
dy
dt

= cos(t) · 1
4y2(t)

(∗)⇐⇒ y2dy = cos(t)
4 dt. (1 point)

Therefore∫
y2dy =

∫ cos(t)
4 dt ⇐⇒ y3(t)

3 = sin(t)
4 + C̃ (1 point)

⇐⇒ y3(t) = 3
4 sin(t) + 3C̃ = 3

4 sin(t) + C

and we get y(t) = 3
√

3
4 sin(t) + C. (1 point)
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Exercise 2) (5 points)

a) Which of the following differential equations for u(t) is exact?

(i) u + u3 + 3u2u′ = 0 .
(ii) u5 + sin(t) + 5tu4u′ = 0 .
(iii) ut2 − tu2u′ = 0 .

Justify your answers.

b) Determine the corresponding potential and the general solution for an exact differential
equation in part a).

Solution:

a) (i) u + u3 + 3u2u′ = 0 . For f(t, u) = u + u3 and g(t, u) = 3u2 , we get
fu = 1 + 3u2 ̸= gt = 0 .
Therefore, the differential equation is not exact.

(ii) u5 + sin(t) + 5tu4u′ = 0 . It holds:
fu(t, u) = 5u4 = gt(t, u) = (5tu4)t = 5u4 . The differential equation is exact.

(iii) ut2 − tu2u′ = 0 . For fu(t, u) = t2 and gt(t, u) = −u2 the condition fu = gt can
only be fulfilled for t = u = 0 .
The differential equation is not exact. (2,5 points)

b) We determine a potential Ψ for the differential equation from part a)ii).
u5 + sin(t) + 5tu4u′ = 0.

f(t, u) = u5 + sin(t), g(t, u) = 5tu4 ,

Ψt(t, u) = u5 + sin(t) =⇒ Ψ(t, u) = u5t − cos(t) + c(u) ⇒

Ψu(t, u) = 5tu4 + 0 + c′(u) != g(t, u) = 5tu4

=⇒ c′(u) = 0 ⇐⇒ c(u) = k ⇐⇒ Ψ(t, u) = u5t − cos(t) + k . (1,5 points)
Solutions of the differential equation fulfill:
Ψ(t, u) = u5t − cos(t) + k = K̃ ⇐⇒ u5t − cos(t) = K . (1 point)

General solution: u(t) = 5
√

K+cos(t)
t

for t ̸= 0 .
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Exercise 3) (6 points)
Determine the general solution of the following differential equation

u′′′(t) + 4u′′(t) − 5u′(t) = −1 − 5t .

Solution:

Characteristic polynomial:
P (λ) = λ3 + 4λ2 − 5λ = λ(λ2 + 4λ − 5 ) . Ansatz (1 point)
λ2 + 4λ − 5 = 0 ⇐⇒ (λ + 2)2 − 9 = 0 ⇐⇒ λ ∈ {−2 − 3, −2 + 3} .
The roots of P are: λ1 = −5, λ2 = 0, λ3 = 1 .
Fundamental system of the corresponding homogeneous differential equation:
u1(t) = e−5t, u2(t) = e0, u3(t) = et.

General solution of the corresponding homogeneous differential equation:
uh(t) = c1e

−5t + c2 + c3 et . (2 points)
In order to compute a particular solution for the inhomogeneous solution, we employ a special
ansatz.
The inhomogeneity is a polynomial of first order multiplied by e0·t , where 0 is a single root
of the characteristic polynomial.
Ansatz: up = polynomial of first order ·e0·t · t = at + bt2 . (1 point)
It holds u′(t) = a + 2bt, u′′(t) = 2b, u′′′(t) = 0 . We plug this into the differential equation
and obtain
0 + 4 · 2b − 5(a + 2bt) = −10bt + 8b − 5a

!= −1 − 5t .
Comparison of coefficients yields b = 1

2 , a = 1 .

Therefore up(t) = t + t2

2 . (1 point)
Then, we obtain a representation of the general solution of the inhomogeneous differential
equation
u(t) = uh(t) + up(t) = c1e

−5t + c2 + c3 et + t + t2

2 . (1 point)
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Exercise 4) (6 points)
Consider the system of differential equations

u ′(t) = A · u (t) =

−1 0 0
1 1 β
2 −β 1

 · u (t)

with parameter β ∈ R .

a) Analyse the stability of the stationary point (0, 0, 0)T of the system.

b) Let β = 0 . Determine a fundamental system of the system of differential equations.

Solution:

a) Computation of eigenvalues

P (λ) := det

−1 − λ 0 0
1 1 − λ β
2 β 1 − λ

 = (−1 − λ) · det
(

1 − λ β
−β 1 − λ

)
.

P (λ) = (−1 − λ) · ((1 − λ)2 + β2) = 0 =⇒ λ1 = −1 , λ2,3 = 1 ±
√

−β2 = 1 ± iβ.

There is (at least) one eigenvalue with a positive real part. The zero solution is unsta-
ble. (2,5 points)

b) β = 0 . Computation of eigenvectors

−1 − λ 0 0
1 1 − λ 0
2 0 1 − λ


v1

v2
v3

 =

0
0
0

 .

For λ1 = −1 the system of equations yields

0 0 0
1 2 0
2 0 2


v1

v2
v3

 =

0
0
0

 =⇒ v2 = −1
2v1, v3 = −v1.

We choose, for example, v[1] =

−2
1
2

 and obtain u [1](t) = e−t

−2
1
2

 .

For λ2 = λ3 = 1 the system of equations yields

−2 0 0
1 0 0
2 0 0


v1

v2
v3

 =

0
0
0

 =⇒ v1 = 0.

We choose, for example, v[2] =

0
1
0

 and v[3] =

0
0
1
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and get u [2](t) = et

0
1
0

 , u [3](t) = et

0
0
1

 .

The general solution is:
u (t) = c1 u [1](t) + c2 u [2](t) + c3 u [3](t) c1, c2, c3 ∈ R. (3,5 points)


