Prof. Dr. R. Lauterbach

Dr. K. Rothe

Differentialgleichungen II für Studierende der Ingenieurwissenschaften

Blatt 2

Aufgabe 5:

Man bestimme die allgemeine Lösung der folgenden partiellen Differentialgleichungen erster Ordnung:

a)
$$4u_x + \frac{1}{3y^2} u_y = 0$$
,

b)
$$zu_x + yu_z = 0$$
.

Aufgabe 6: (Klausur SoSe 10, SoSe 12)

Man löse die Anfangswertaufgaben

a)
$$u_x + \frac{2xy}{1+x^2}u_y = 0$$
 mit $u(0,y) = \cos y$.

b)
$$u_x + 3x^2 u_y = 1$$
 mit $u(0, y) = \sin y$,

Aufgabe 7: (Klausur SoSe 06)

Gegeben sei die partielle Differentialgleichung erster Ordnung

$$xu_x - 3x^3u_y = u .$$

- a) Man berechne die allgemeine Lösung.
- b) Mit Hilfe der allgemeinen Lösung bestimme man die Lösung, die der Anfangsbedingung $u(x, 7x^3) = x^2$ genügt.
- c) Man führe die Probe durch, ob die in b) berechnete Funktion auch wirklich die Anfangswertaufgabe löst.
- d) Man bestimme mit dem Ergebnis aus a) die Lösung, die der Anfangsbedingung $u(x,7-x^3)=x^2$ genügt.

Aufgabe 8:

Gegeben sei das folgende Anfangswertproblem für die Burgers-Gleichung

$$u_t + uu_x = 0$$
 für $(x, t) \in \mathbb{R} \times (0, \infty)$ mit $u(x, 0) = u_0(x)$.

- a) Man berechne die allgemeine Lösung mit Hilfe der Charakteristikenmethode.
- b) Man löse die Aufgabe für die Anfangsdaten
 - (i) $u_0(x) = 4x$,
 - (ii) $u_0(x) = -4x$,

zeichne die charakteristischen Grundkurven und gebe den Zeitpunkt $\,T\,$ an, bis zu dem die Lösung existiert.

Abgabetermin: 22.4.-25.4. (zu Beginn der Übung)