Differential Equations II

Green's Function

Recap

Definition: (Green's Function) Let $U\subset\mathbb{R}^n$ be open and $\Phi^x(\mathbf{y})$ the solution of Dirichlet's Problem

$$\begin{array}{rcl} \Delta \Phi^x & = & 0 & \mbox{in } U \\ \Phi^x & = & \Phi(\mathbf{y} - \mathbf{x}) & \mbox{on } \partial U. \end{array}$$

Then Green's function G on U is defined by

$$G(\mathbf{x},\mathbf{y}) := \Phi(\mathbf{y} - \mathbf{x}) - \Phi^x(\mathbf{y}) \quad \mathbf{x},\mathbf{y} \in U, \mathbf{x} \neq \mathbf{y}.$$

Proposition: (Solution of Dirichlet Problem of Poisson's Equation) Let $u\in C^2(\overline{U})$ be a solution of the Dirichlet problem of Poisson's equation. Then u can be represented as

$$u(\mathbf{x}) = \int_{\partial U} g(\mathbf{y}) \frac{\partial G}{\partial \mathbf{n}}(\mathbf{x}, \mathbf{y}) dS(\mathbf{y}) + \int_{U} f(\mathbf{y})G(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad (\mathbf{x} \in U).$$

f and g are the right hand side and boundary condition of the Dirichlet problem.

Remarks: (Properties of Green's Function $G(\mathbf{x}, \mathbf{y})$)

- 1. $G(\mathbf{x},\mathbf{y})$ is harmonic in \mathbf{y} , except for the point $\mathbf{y}=\mathbf{x}$
- 2. $G(\mathbf{x},\mathbf{y})$ satisfies homogeneous boundary conditions:

$$G(\mathbf{x},\mathbf{y}) = 0 \quad \forall \mathbf{y} \in \partial U, \mathbf{x} \in U$$

- 3. $G(\mathbf{x},\mathbf{y})$ is uniquely defined
- 4. $G(\mathbf{x}, \mathbf{y})$ is symmetric:

$$G(\mathbf{x}, \mathbf{y}) = G(\mathbf{y}, \mathbf{x})$$

Definition: (Green's Function)

Let $U \subset \mathbb{R}^n$ be open and $\Phi^x(\mathbf{y})$ the solution of Dirichlet's Problem

$$\Delta \Phi^x = 0 \text{ in } U$$

$$\Phi^x = \Phi(\mathbf{y} - \mathbf{x}) \text{ on } \partial U.$$

Then Green's function G on U is defined by

$$G(\mathbf{x}, \mathbf{y}) := \Phi(\mathbf{y} - \mathbf{x}) - \Phi^x(\mathbf{y}) \quad \mathbf{x}, \mathbf{y} \in U, \mathbf{x} \neq \mathbf{y}.$$

Proposition: (Solution of Dirichlet Problem of Poisson's Equation) Let $u \in C^2(\overline{U})$ be a solution of the Dirichlet problem of Poisson's equation. Then u can be represented as

$$u(\mathbf{x}) = \int_{\partial U} g(\mathbf{y}) \frac{\partial G}{\partial \mathbf{n}}(\mathbf{x}, \mathbf{y}) \ dS(\mathbf{y}) + \int_{U} f(\mathbf{y}) G(\mathbf{x}, \mathbf{y}) \ d\mathbf{y} \quad (\mathbf{x} \in U).$$

f and g are the right hand side and boundary condition of the Dirichlet problem.

Remarks: (Properties of Green's Function $G(\mathbf{x}, \mathbf{y})$)

- 1. $G(\mathbf{x}, \mathbf{y})$ is harmonic in \mathbf{y} , except for the point $\mathbf{y} = \mathbf{x}$
- 2. $G(\mathbf{x}, \mathbf{y})$ satisfies homogeneous boundary conditions:

$$G(\mathbf{x}, \mathbf{y}) = 0 \quad \forall \mathbf{y} \in \partial U, \mathbf{x} \in U$$

- 3. $G(\mathbf{x}, \mathbf{y})$ is uniquely defined
- 4. $G(\mathbf{x}, \mathbf{y})$ is symmetric:

$$G(\mathbf{x}, \mathbf{y}) = G(\mathbf{y}, \mathbf{x})$$

Green's Function and Poisson Kernel for Half Space \mathbb{R}^n_+

Definition: (Poisson Kernel)

The function

$$K(\mathbf{x}, \mathbf{y}) := \frac{2x_n}{n\alpha(n)} \frac{1}{|\mathbf{x} - \mathbf{y}|^n},$$

where $\mathbf{x} \in \mathbb{R}^n_+$, $\mathbf{y} \in \partial \mathbb{R}^n_+$ is called Poisson Kernel of \mathbb{R}^n_+ .

Proposition: (Dirichlet Problem for Laplace's Equation) Let the boundary value problem

$$\left\{ \begin{array}{ll} \Delta u = 0 & \text{in} & \mathbb{R}^n_+ \\ u = g & \text{on} & \partial \mathbb{R}^n_+ = \{\mathbf{x} = (x_1, \dots, x_n)^\top : x_n = 0\} \end{array} \right.$$

be given. Then the solution is given by Poisson's integral form

$$u(\mathbf{x}) = \frac{2x_n}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+} \frac{g(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^n} \ d\mathbf{y}.$$

In particular, due to

$$\int_{\partial \mathbb{R}^n_+} K(\mathbf{x}, \mathbf{y}) \ d\mathbf{y} = 1$$

 $u(\mathbf{x})$ is bounded, if g is bounded. Furthermore, one can show that u is indefinitely differentiable.

Definition: (Poisson Kernel)

The function

$$K(\mathbf{x}, \mathbf{y}) := \frac{2x_n}{n\alpha(n)} \frac{1}{|\mathbf{x} - \mathbf{y}|^n},$$

where $\mathbf{x} \in \mathbb{R}^n_+$, $\mathbf{y} \in \partial \mathbb{R}^n_+$ is called Poisson Kernel of \mathbb{R}^n_+ .

Proposition: (Dirichlet Problem for Laplace's Equation) Let the boundary value problem

$$\begin{cases} \Delta u = 0 & \text{in} \quad \mathbb{R}^n_+ \\ u = g & \text{on} \quad \partial \mathbb{R}^n_+ = \{ \mathbf{x} = (x_1, \dots, x_n)^\top : x_n = 0 \} \end{cases}$$

be given. Then the solution is given by Poisson's integral form

$$u(\mathbf{x}) = \frac{2x_n}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+} \frac{g(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^n} d\mathbf{y}.$$

In particular, due to

$$\int_{\partial \mathbb{R}^n_+} K(\mathbf{x}, \mathbf{y}) \ d\mathbf{y} = 1$$

 $u(\mathbf{x})$ is bounded, if g is bounded. Furthermore, one can show that u is indefinitely differentiable.

Green's Function and Poisson Kernel for Unit Ball

```
Proposition: (Dirichlet Problem for Laplace's Equation on the Unit Ball) Let the boundary problem be given \left\{\begin{array}{ll} \Delta a = 0 & \text{in} & \{x \in \mathbb{R}^n : |x| < 1\} \\ u = y & \text{on} & \{x \in \mathbb{R}^n : |x| = 1\} \end{array}\right. Then the solution is given by Poisson's Integral Form u(x) = \frac{1 - |x|^2}{n_0(n)} \frac{|y|}{|y| - 1} \frac{|y|}{|x| - y|^n} \, dS(y). Thus, the Poisson kernel for the unit ball is K(x,y) = \frac{1 - |x|^2}{n_0(n)} \frac{1}{|x - y|^n} for |x| < 1 and |y| = 1.   
\frac{K(x,y)}{n_0(n)} = \frac{1}{|x|} \frac{1}{n_0(n)} \frac{1}{|x - y|^n} for |x| < 1 and |y| = 1.   
\frac{1}{n_0(n)} \frac{1}{|x - y|^n} \frac{1}{n_0(n)} \frac{1}{|x - y|^n} for |x| < 1 and |y| = 1.   
\frac{1}{n_0(n)} \frac{1}{|x - y|^n} \frac{1}{n_0(n)} \frac{1}{|x - y|^n} \frac{1}{n_0(n)} \frac{1}{|x - y|^n} for |x| < 1 and |x| = 1.   
\frac{1}{n_0(n)} \frac{1}{|x - y|^n} \frac{1}{n_0(n)} \frac{1}{n_0(n)} \frac{1}{|x - y|^n} \frac{1}{n_0(n)} \frac{1}{|x - y|^n} \frac{1}{n_0(n)} \frac{1}{n_0(n)} \frac{1}{|x - y|^n} \frac{1}{n_0(n)} \frac{1
```

Proposition: (Dirichlet Problem for Laplace's Equation on the Unit Ball) Let the boundary problem be given

$$\begin{cases} \Delta u = 0 & \text{in} \quad \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x}| < 1\} \\ u = g & \text{on} \quad \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x}| = 1\} \end{cases}$$

Then the solution is given by Poisson's Integral Form

$$u(\mathbf{x}) = \frac{1 - |\mathbf{x}|^2}{n\alpha(n)} \int_{|\mathbf{y}|=1} \frac{g(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^n} dS(\mathbf{y}).$$

Thus, the Poisson kernel for the unit ball is

$$K(\mathbf{x}, \mathbf{y}) = \frac{1 - |\mathbf{x}|^2}{n\alpha(n)} \frac{1}{|\mathbf{x} - \mathbf{y}|^n}$$

for $|\mathbf{x}| < 1$ and $|\mathbf{y}| = 1$.

Reasoning:

• Let $\mathbf{x} \in \mathbb{R} \setminus \{0\}$. Then

$$\tilde{\mathbf{x}} = \frac{\mathbf{x}}{|\mathbf{x}|^2}$$

denotes the dual point of x w.r.t. the boundary of the unit ball $\partial B(0,1)$.

• Therefore, the solution of the correction problem

$$\left\{ \begin{array}{ll} \Delta \Phi^x = & 0 & \text{in} \quad \mathring{B}(0,1) = \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x}| < 1\} \\ \Phi^x = & \Phi(\mathbf{y} - \mathbf{x}) & \text{on} \quad \partial B(0,1) \end{array} \right.$$

is given by

$$\Phi^x(\mathbf{y}) = \Phi(|\mathbf{x}|(\mathbf{y} - \tilde{\mathbf{x}})).$$

• Obtain Green's function for the unit ball as

$$G(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{y} - \mathbf{x}) - \Phi(|\mathbf{x}|(\mathbf{y} - \tilde{\mathbf{x}}))$$

for $\mathbf{x}, \mathbf{y} \in B(0,1)$, $x \neq y$.

Remark: Using the transformation

$$\tilde{u}(\mathbf{x}) = u(r\mathbf{x})$$

a solution for the ball $B(0,r) = \{\mathbf{x} : |\mathbf{x}| < r\}$ can easily be derived.

Recap

Definition: (Generic Function) $(U \cap U' \cap U') = \operatorname{top} \inf \{ u \in V(y) \text{ the solution of Definition's Problem } \Delta u' = 0 \text{ in } U$ $\Delta u' = 0 \text{ in } U$ u' = 0 or U u' = 0 or U These Generic function G or U is offered by $G[x,y] := \theta(y-x) - \theta'(y) \text{ } x,y \in U, x \neq y,$

Proposition (Initialized Circles Foldow of Foreston Superior) (in $v \in C^{\infty}(\mathbb{R}^n)$ as whitein of the Corbola politics of Foreston superiors. Then $v \in C^{\infty}(\mathbb{R}^n)$ as whitein of the Corbola politics of Foreston superiors. Then $v \in C^{\infty}(\mathbb{R}^n)$ and $\mathcal{G}(\mathcal{G}) = \mathcal{G}(\mathcal{G}) = \mathcal{G}(\mathcal{G})$ (i.e. $v \in \mathcal{G}$). If $\mathcal{G}(\mathcal{G}) = \mathcal{G}(\mathcal{G}) = \mathcal{G}(\mathcal{G})$ and $\mathcal{G}(\mathcal{G}) = \mathcal{G}(\mathcal{G}) = \mathcal{G}(\mathcal{G})$. If only $\mathcal{G}(\mathcal{G}) = \mathcal{G}(\mathcal{G}) = \mathcal{G}(\mathcal{G})$ and $\mathcal{G}(\mathcal{G}) = \mathcal{G}(\mathcal{G}) = \mathcal{G}(\mathcal{G})$.

Homewhite (Properties of Grave's Function G(x,y))

1. G(x,y) is hermodic in y, assign for the gaint y = x2. G(x,y) satisfies from passes benefity conditions. G(x,y) = 1 by $x_iG(x,y_i)$ 3. G(x,y) is uniquely defined.

4. $G(x,y) = G(y,x_i)$ $G(x,y) = G(y,x_i)$ 6. $G(x,y) = G(y,x_i)$ 6. $G(x,y) = G(y,x_i)$

