Differential Equations II

Fourier Methods

Motivating Example in 1D

Preliminary Remark:
Consider the one-dimensional boundary value problem (Poisson's Equation)

$$\left\{ \begin{array}{rcl} & -T \frac{d^2 u}{dx^2} & = & f(x), & 0 < x < l \\ u(0) & = u(l) & = & 0 \end{array} \right.$$

Remark: (General Approximate Solution of 1D Poisson's Equation)

Let the one-dimensional boundary value problem be given:

$$\begin{cases}
-T \frac{d^2u}{dx^2} = f(x), & 0 < x < l, \\
u(0) = u(l) = 0.
\end{cases}$$

 \bullet Approximate the right hand side f(x) by a finite Fourier series $f_N(x)$:

$$f_N(x) = \sum_{n=1}^{N} c_n \sin \left(\frac{n\pi x}{l} \right).$$

 \bullet The Fourier coefficients are $(n=1,\dots,N)$

$$c_n = \frac{2}{l} \int_0^l f(x) \sin \left(\frac{n\pi x}{l} \right) dx.$$

Then an approximate solution of the boundary value problem is given by:

$$u_N(x) = \sum_{n=1}^{N} \frac{t^2 c_n}{T n^2 \pi^2} \sin \left(\frac{n \pi x}{t} \right).$$

Preliminary Remark:

Consider the one-dimensional boundary value problem (Poisson's Equation)

$$\begin{cases} -T\frac{d^2u}{dx^2} &= f(x), & 0 < x < l \\ u(0) &= u(l) &= 0 \end{cases}$$

Application: The equation describes the equilibrium position of a fixed hanging rope with tension T and external force f(x).

1

Remark: (General Approximate Solution of 1D Poisson's Equation)

• Let the one-dimensional boundary value problem be given:

$$\begin{cases} -T \frac{d^2 u}{dx^2} = f(x), & 0 < x < l, \\ u(0) = u(l) = 0. \end{cases}$$

• Approximate the right hand side f(x) by a finite Fourier series $f_N(x)$:

$$f_N(x) = \sum_{n=1}^{N} c_n \sin\left(\frac{n\pi x}{l}\right).$$

ullet The Fourier coefficients are $(n=1,\ldots,N)$

$$c_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi x}{l}\right) dx.$$

• Then an approximate solution of the boundary value problem is given by:

$$u_N(x) = \sum_{n=1}^{N} \frac{l^2 c_n}{T n^2 \pi^2} \sin\left(\frac{n\pi x}{l}\right).$$

Fourier Method for the Heat Equation

$$\left\{ \begin{array}{lll} u_t - u_{xx} & = & f(x,t) & : & 0 < x < l, \; 0 < t \le T, \\ u(x,0) & = & g(x) & : & 0 \le x \le l, \\ u(0,t) & = & u(l,t) = 0 & : & 0 \le t \le T. \end{array} \right.$$

We look for a solution in form of a Fourier series:

$$u_N(x) = \sum_{n=1}^{\infty} a_n(t) \sin\left(\frac{n\pi x}{l}\right).$$

Linear System of Decoupled ODEs:

Obtain a decoupled linear system of ODEs:

 $\dot{a}_n + k_n a_n = c_n$, n = 1, 2, ...

 The solutions can be given directly: $a_n(t) = b_n \exp\left(-k_n \cdot t\right) + \int_0^t \exp\left(-k_n \cdot (t-s)\right) c_n(s) \ ds.$

$$a_n(t) = \frac{2}{l} \int_0^l u(x, t) \sin \left(\frac{n\pi x}{l} \right) dx.$$

 $\bullet\,$ The right hand side (Inhomogeneity) f(x,t) can be written

$$f(x, t) = \sum_{i=0}^{\infty} c_n(t) \sin \left(\frac{n\pi x}{t} \right)$$
, with $c_n(t) = \frac{2}{l} \int_0^t f(x, t) \sin \left(\frac{n\pi x}{t} \right) dx$.

Compute temporal and spatial derivatives of the solution approach for u:

$$\frac{\partial u}{\partial t}(x,t) \ = \ \sum_{n=1}^{\infty} \frac{\partial a_n}{\partial t}(t) \sin \left(\frac{n\pi x}{l} \right)$$

$$\frac{\partial u}{\partial x}(x, t) = \sum_{n=1}^{\infty} a_n(t) \frac{n\pi}{l} \cos \left(\frac{n\pi x}{l}\right)$$

$$\frac{\partial^2 u}{\partial x^2}(x, t) = -\sum_{n=1}^{\infty} a_n(t) \frac{n^2 \pi^2}{\ell^2} \sin \left(\frac{n \pi x}{\ell} \right)$$

$$u_{\ell} + u_{xx} = \sum_{\alpha=1}^{\infty} \left(\frac{\partial u_{\alpha}}{\partial t}(t) + a_{\alpha}(t) \frac{n^2 \pi^2}{D} \right) \sin \left(\frac{n \pi x}{l} \right).$$

• Coefficients $a_1(0), a_2(0),...$ are obtained from initial conditions u(x,0) = g(x):

$$g(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{t}\right), \quad b_n = \frac{2}{t} \int_0^t g(x) \sin\left(\frac{n\pi x}{t}\right) dx$$

 $\Rightarrow a_n(0) = b_n, \quad n = 1, 2, ...$

Remember: (Heat Equation) Consider the initial boundary value problem of the heat equation:

$$\begin{cases} u_t - u_{xx} &= f(x,t) &: 0 < x < l, \ 0 < t \le T, \\ u(x,0) &= g(x) &: 0 \le x \le l, \\ u(0,t) &= u(l,t) = 0 &: 0 \le t \le T. \end{cases}$$

We look for a solution in form of a Fourier series:

$$u_N(x) = \sum_{n=1}^{\infty} a_n(t) \sin\left(\frac{n\pi x}{l}\right).$$

Remark: Since only sin appears in the Fourier series, homogeneous boundary conditions are automatically satisfied.

Solution Approach:

• For the coefficients of the solution representation we have:

$$a_n(t) = \frac{2}{l} \int_0^l u(x,t) \sin\left(\frac{n\pi x}{l}\right) dx.$$

• The right hand side (Inhomogeneity) f(x,t) can be written

$$f(x,t) = \sum_{n=1}^{\infty} c_n(t) \sin\left(\frac{n\pi x}{l}\right), \text{ with } c_n(t) = \frac{2}{l} \int_0^l f(x,t) \sin\left(\frac{n\pi x}{l}\right) dx.$$

ullet Compute temporal and spatial derivatives of the solution approach for u:

$$\frac{\partial u}{\partial t}(x,t) = \sum_{n=1}^{\infty} \frac{\partial a_n}{\partial t}(t) \sin\left(\frac{n\pi x}{l}\right)$$

$$\frac{\partial u}{\partial x}(x,t) = \sum_{n=1}^{\infty} a_n(t) \frac{n\pi}{l} \cos\left(\frac{n\pi x}{l}\right)$$

$$\frac{\partial^2 u}{\partial x^2}(x,t) = -\sum_{n=1}^{\infty} a_n(t) \frac{n^2 \pi^2}{l^2} \sin\left(\frac{n\pi x}{l}\right)$$

Comparison of Coefficients:

Obtain for left hand side of heat equation

$$u_t + u_{xx} = \sum_{n=1}^{\infty} \left(\frac{\partial a_n}{\partial t}(t) + a_n(t) \frac{n^2 \pi^2}{l^2} \right) \sin\left(\frac{n\pi x}{l}\right).$$

• Comparison of coefficients with Fourier series for f(x,t) yields a system of ODEs:

$$\frac{\partial a_n}{\partial t}(t) + a_n(t)\frac{n^2\pi^2}{l^2} = c_n(t).$$

• Coefficients $a_1(0), a_2(0), \ldots$ are obtained from initial conditions u(x,0) = g(x):

$$g(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{l}\right), \quad b_n = \frac{2}{l} \int_0^l g(x) \sin\left(\frac{n\pi x}{l}\right) dx$$

$$\Rightarrow a_n(0) = b_n, \quad n = 1, 2, \dots$$

Linear System of Decoupled ODEs:

Obtain a decoupled linear system of ODEs:

$$\dot{a}_n + k_n a_n = c_n, \quad n = 1, 2, \dots$$

with
$$k_n = \frac{n^2\pi^2}{l^2}$$
.

• The solutions can be given directly:

$$a_n(t) = b_n \exp(-k_n \cdot t) + \int_0^t \exp(-k_n \cdot (t-s)) c_n(s) ds.$$

3

Fourier Method: Properties, Boundary Conditions

Observation: • For T>0 fixed, the $a_n(t)$ decay exponentially fast $(n\to\infty)$. Higher square for a regression happe frequencies in the solution. • For a fixed, the $a_n(t)$ decay exponentially fast $(t\to\infty)$. The decay is faster, the larger t for fixed the $a_n(t)$ decay exponentially fast $(t\to\infty)$. The decay is faster, the larger t faster t fast

Observation:

- For T > 0 fixed, the $a_n(t)$ decay exponentially fast $(n \to \infty)$. Higher values for n represent higher frequencies in the solution.
- For n fixed, the $a_n(t)$ decay exponentially fast $(t \to \infty)$. The decay is faster, the larger n. For t large only few terms in the Fourier series suffice for an accurate solution.

Example:

Consider the inhomogeneous initial boundary value problem

$$\begin{cases} u_t - u_{xx} &= x & : 0 < x < 1, 0 < t \le T, \\ u(x,0) &= 0 & : 0 \le x \le 1, \\ u(0,t) &= u(1,t) = 0 : 0 \le t \le T. \end{cases}$$

The with the previous results we have:

$$b_n = 0$$

$$c_n(t) = c_n = 2 \frac{(-1)^{n+1}}{n\pi}$$

And therefore

$$a_n(t) = 2 \int_0^t e^{-n^2 \pi^2 (t-s)} \frac{(-1)^{n+1}}{n\pi} ds = 2 \frac{(-1)^{n+1}}{n^3 \pi^3} \left(1 - e^{-n^2 \pi^2 t}\right).$$

So far:

Initial boundary value problems with homogeneous boundary conditions, i.e.

$$\begin{cases} u_t - u_{xx} &= f(x,t) &: 0 < x < l, 0 < t \le T, \\ u(x,0) &= g(x) &: 0 \le x \le l, \\ u(0,t) &= u(l,t) = 0 &: 0 \le t \le T. \end{cases}$$

Question:

What if

1. (onesided) Neumann boundary conditions

$$u(0,t) = 0, \quad \frac{\partial u}{\partial x}(l,t) = 0;$$

2. periodic boundary conditions

$$u(0,t) = u(l,t), \quad \frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(l,t).$$

How do the corresponding Fourier methods look like?

4

If both sides are (heat) isolated, then we obtain the initial boundary value problem

$$\begin{cases} u_t - u_{xx} &= f(x,t) : 0 < x < l, 0 < t \le T, \\ u(x,0) &= g(x) : 0 \le x \le l, \\ u_x(0,t) &= 0 : 0 \le t \le T, \\ u_x(l,t) &= 0 : 0 \le t \le T. \end{cases}$$

In this case the functions

$$u(x,t) = 1, \quad u(x,t) = \cos\left(\frac{\pi x}{l}\right)$$

satisfy the given Neumann boundary conditions.

A **solution approach** therefore reads

$$u(x,t) = b_0(t) + \sum_{n=1}^{\infty} b_n(t) \cos\left(\frac{n\pi x}{l}\right)$$

Periodic Boundary Conditions

Let the initial boundary value problem be given on **interval** [-l, l]:

$$\begin{cases} u_t - u_{xx} &= f(x,t) : -l < x < l, \ 0 < t \le T, \\ u(x,0) &= g(x) : -l \le x \le l, \\ u(-l,t) &= u(l,t) : 0 \le t \le T, \\ u_x(-l,t) &= u_x(l,t) : 0 \le t \le T. \end{cases}$$

Periodic functions on [-l, l] are

$$\psi(x) = \frac{1}{2}, \quad \psi(x) = \cos\left(\frac{n\pi x}{l}\right), \quad \psi(x) = \sin\left(\frac{n\pi x}{l}\right)$$

satisfy the given Neumann boundary conditions.

A solution approach using Fourier series thus reads

$$u(x,t) = a_0(t) + \sum_{n=1}^{\infty} \left(a_n(t) \cos\left(\frac{n\pi x}{l}\right) + b_n(t) \sin\left(\frac{n\pi x}{l}\right) \right).$$

With series expansions

$$f(x,t) = c_0(t) + \sum_{n=1}^{\infty} \left(c_n(t) \cos\left(\frac{n\pi x}{l}\right) + d_n(t) \sin\left(\frac{n\pi x}{l}\right) \right)$$
$$g(x) = p_0 + \sum_{n=1}^{\infty} \left(p_n \cos\left(\frac{n\pi x}{l}\right) + q_n \sin\left(\frac{n\pi x}{l}\right) \right)$$

we obtain the ordinary differential equations

$$\frac{da_0}{dt}(t) = c_0(t)$$

$$\frac{da_n}{dt}(t) + \frac{n^2 \pi^2}{l^2} a_n(t) = c_n(t)$$

$$\frac{db_n}{dt}(t) + \frac{n^2 \pi^2}{l^2} b_n(t) = d_n(t)$$

with corresponding initial conditions

$$a_0(0) = p_0, \quad a_n(0) = p_n, \quad b_n(0) = q_n$$

Fourier Method for the Wave Equation

Idea: Seek solution analogously to heat equation

Consider the initial boundary value problem

$$\begin{cases} u_{tt} - u_{xx} &= f(x, t) &: 0 < x < l, 0 < t \le \\ u(x, 0) &= g(x) &: 0 \le x \le l, \\ u_t(x, 0) &= h(x) &: 0 \le x \le l, \\ u(0, t) &= u(l, t) &= 0 &: 0 \le t \le T. \end{cases}$$

Now, seek a solution of the form

$$u(x, t) = \sum_{n=1}^{\infty} a_n(t) \sin \left(\frac{n\pi x}{l}\right).$$

The Fourier series expansions for $f(x,t),\,g(x),$ and h(x) yield ODEs for the coefficients $a_i(t),\,i=1,2,\dots$

Example:

The solution for the initial boundary value problem

$$\begin{cases} u_{t1} - u_{xx} & = 0 & : 0 < x < l, 0 < t \le T, \\ u(x, 0) & = g(x) & : 0 \le x \le L, \\ u_{t}(x, 0) & = h(x) & : 0 \le x \le l, \\ u(0, t) & = u(l, t) & = 0 & : 0 \le t \le T. \end{cases}$$
 where by

is given by

$$u(x, t) = \sum_{n=1}^{\infty} \left[b_n \cos \left(\frac{n\pi}{l} t \right) + \frac{d_n l}{n\pi} \sin \left(\frac{n\pi}{l} t \right) \right] \sin \left(\frac{n\pi x}{l} \right)$$

where b_n are the Fourier coefficients corresponding to the series expansion for if tial conditions u(x,0)=g(x) and d_n the corresponding coefficients for condition $u_t(x,0)=h(x)$.

Idea: Seek solution analogously to heat equation

Consider the initial boundary value problem

$$\begin{cases} u_{tt} - u_{xx} &= f(x,t) &: 0 < x < l, 0 < t \le T, \\ u(x,0) &= g(x) &: 0 \le x \le l, \\ u_t(x,0) &= h(x) &: 0 \le x \le l, \\ u(0,t) &= u(l,t) = 0 &: 0 \le t \le T. \end{cases}$$

Now, seek a solution of the form

$$u(x,t) = \sum_{n=1}^{\infty} a_n(t) \sin\left(\frac{n\pi x}{l}\right).$$

The Fourier series expansions for f(x,t), g(x), and h(x) yield ODEs for the coefficients $a_i(t)$, $i=1,2,\ldots$

Example:

The solution for the initial boundary value problem

$$\begin{cases} u_{tt} - u_{xx} &= 0 & : 0 < x < l, 0 < t \le T, \\ u(x,0) &= g(x) & : 0 \le x \le l, \\ u_t(x,0) &= h(x) & : 0 \le x \le l, \\ u(0,t) &= u(l,t) = 0 & : 0 \le t \le T. \end{cases}$$

is given by

$$u(x,t) = \sum_{n=1}^{\infty} \left[b_n \cos\left(\frac{n\pi}{l}t\right) + \frac{d_n l}{n\pi} \sin\left(\frac{n\pi}{l}t\right) \right] \sin\left(\frac{n\pi x}{l}\right)$$

where b_n are the Fourier coefficients corresponding to the series expansion for initial conditions u(x,0) = g(x) and d_n the corresponding coefficients for condition $u_t(x,0) = h(x)$.



