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Continuity Equation General Definition

Ocfinition: (Patial Differential Equation)
— An equation resp. a system of eguations of the form
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(PDE) for the m Functions s (x)..... m (X).
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Physical Principles of PDEs

Conservation Principle Variational Principle

Idea: Derive PDE from physical lae (conservation)! Idea: Derive PDE from physical law (Minimization)!

Membrane = Minimal surface

Minimization problem: minimize bending energy

Mass M in control volume V
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General Definition

Definition: (Partial Differential Equation)
An equation resp. a system of equations of the form

F (x, u(x) Oou Ou oPu oPu oPu _o
’ '0x, " Oy’ Oy 0P 1210y 0Py, )

for an unknown function u : D — R™, D C R", is called system of partial
differential equations (PDE) for the m functions u;(x), ..., un(X).

OPu

If one of the partial derivatives occurs explicitly and is of pt" order (aplwlu_apnxn ),

then we call the PDE of order p.

first and second order




Continuity Equation

Continuity Equation: Flux Function:
o Let p(x,t) be mass density of a physical constituent (e.g. fluid density). o Write the continuity eq. by means of a a(x, t):
0
e Assume a of the form ( p(5,8) + V- a(x,£) = 0.
d o

- p(x,t) dx = 0.

dt Jp, o Avoid two unknowns p and q in one equation by
e According to Reynold’s transport theorem it holds: qa(x,t) = q(p(x,t), Vp(x,t),...).
o
/ [,{TL;H» v. (pv)] (x,t) dx = 0. e Example: the flux q is proportional to the density p, i.e.
D, LC
q(x,t) =a-p(x,t), acR"
e Since D, C R™ arbitrary subset, the PDE ( ) holds:

a e Then we obtain the ( ):
W/)(x.[) + V- (pv)(x,t) =0.

%p(x.t) +a-Vp(x,t) =0.
C




Continuity Equation:
e Let p(x,t) be mass density of a physical constituent (e.g. fluid density).

e Assume a conservation principle of the form

d

— t) dx = 0.
dt Dtp(x,) X O

e According to Reynold’s transport theorem it holds:
0
/ [—p+ V. (pv)] (x,t) dx = 0.
p, LOt

e Since D; C R™ arbitrary subset, the PDE (continuity equation) holds:

%p(x, t)+ V- (pv)(x,t) =0.




Flux Function:

e Write the continuity eq. by means of a flux function q(x,t):

0
ap(xa t) + V- Q(X, t) = 0.

e Avoid two unknowns p and q in one equation by
q(x,t) = q(p(x, 1), Vp(x, 1), ..).
e Example: the flux q is proportional to the density p, i.e.
q(x,t) =a- p(x,t), aecR".

e Then we obtain the (transport equation):

%p(x, t)+a-Vp(x,t) =0.




2. Method of
Characteristics

Definition: The autonomous system of ODEs
x(t) = a(x())
i i to a

Is called C istic System of Di
homogeneous linear PDE

> ailxjus, =0, xeR™

Example: Consider the PDE i three varisbles

vy £y + (7, = 0

Definition (Cauchy Problem)

The initial value problem defined on the whole R™
The Charscsuitic syt of ODE read
{ e+ 0 Xt u)ug, = b(xt.u) in R" x (0,00)
u=g on R" x {t =0} o
o=y
is called Cauchy ) 4= ey
The geneesl scution is
) = o
ORI
1 N

10.



Definition: The autonomous system of ODEs

Is called Characteristic System of Differential Equations corresponding to a
homogeneous linear PDE



Example: Consider the PDE in three variables
Tuy + yuy + (22 + y*)u, = 0.

The Characteristic system of ODEs reads:

r = x
2 o= 224 ?
The general solution is
x(t) = clet
y(t) = coe’
z(t) = %(cf + c3)e® +c3

12.



Definition (Cauchy Problem):
The initial value problem defined on the whole R"

U + > o @i (X, tu)ug, = b(x,t,u) in R™ x (0,00)
U = ug on R™ x {t =0}

Is called Cauchy Problem.

13.



3. Conservationlaws

. o Definition: (weak solution)
B ° A function u € L™(R x [0,5]) & called ir s or weak solution of the
s s by the o fction (4} = . 1. by the Cauchy
b conservation law 1t + f () = 0. if for all test functions v
inRul0 - foo -
R fe=0} l / / 1.4.»,./(..1,».141.-4:,/ vol#)e(z,0) dz = 0.

o The soiton s ghen by (1] = 5y + faelsa).

B —
;
{

egelarity e £+ 1

then 1) devrcpy

A e i of B i ity sy B 0511
© The st o £ 0.1

ool o 135 Octton (sickwve sltin)

sen= 45 0sese h S SV TR——

3 shock fron 2 = s(0). 4 € €1 s, such UL w & & cassical soltion for each
2 a(t) 30d x > o(t) and u hat 2 jump 3t 2 = s(1) with height

[mlde) = ul)* )= w(xlt)",6)

i(1) s cated

tion: (Rankine-Hugoniot condition)
1.2 = a(t) i 3 shock front of 3 shock wave solution of vy + f(u), = 0, then for
(1) v holds:

the shock speed (1) the
1) _ fluls(e)~, ) - Sluis(e)*,0)
=0T e, 0 - (et ,0)

14.



2

Example: (Burgers' Equation)
Burgers' Gleichung is given by the flux function f(u) = %-, resp. by the Cauchy
problem

U +uuy, = 0 in Rx]0, oof
u= U on R x {t =0} )
1
e The solution is given by u(t) = xo + tug(xo). . 7
e If ug is given by
1 : =<0
u(z)=<¢ 1—z : 0<z<l1
0 : =z>1
then z(t) develops a singularity for t — 1. 1
e A classical solution of Burgers' equation exists only locally for 0 <t < 1.
e The local solution for ¢t € [0, 1] is:
1 : z<1
1—
u(z,t) = TF o 0<t<z<l
0 : x>1

15.



Definition: (weak solution)
A function u € L (R x [0,00[) is called integral solution or weak solution of the
conservation law u; + f(u), = 0, if for all test functions v:

/Ooo /_o;(“"’t + fw)vy) dedt + /_ o:o uo(z)v(z,0) dz = 0.

16.



Definition: (shock wave solution)
A shock wave solution u is a weak solution of the conservation law

'U't+f(u):1::O

if a shock front & = s(t), s € C! exists, such that u is a classical solution for each
x < s(t) and = > s(t) and u has a jump at z = s(t) with height

[u](t) = u(s(t)™,t) — u(s(t) ", 1)

$(t) is called shock speed.

17.



Proposition: (Rankine-Hugoniot condition)
If £ = s(t) is a shock front of a shock wave solution of u; + f(u), = 0, then for
the shock speed $(t) the Rankine-Hugoniot condition holds:

s U1 _ (@), 1) = fluls(®)", 1))
t t 'u,(s(t +7t)

[u] u(s(t)—,t)

18.



4. Entropy
Condition

Proposition: (Rarefaction Wave)
Let the Riemann problem with Burgers' equation u; + uu, = 0 in Rx]0,00[ and
u(z,t =0) =z be given. Let

HEE 5. .
un(z):{:: . :;g with u; < u,.

Then the rarefaction wave is given by

wo:oz< fllw)t
u(z,t)=q g(3) = flu)t<z<f(u)t
ur x> f(ug)t

an integral solution of the Riemann problem.

Definition: (Entropy Condition)
An integral solution is called
condition or Lax-Oleinik condition:

There exists C > 0, such that for all z,z € R, ¢ > 0 with z > 0 it holds:

lution, if the solution fulfills the entropy

ult,z + 2) —ult,z) < %:.

19.



Proposition: (Rarefaction Wave)
Let the Riemann problem with Burgers' equation u; + uu; = 0 in Rx]0, 00| and
u(x,t = 0) = xo be given. Let

w : <0 :
ug(x) = with u U .
(@) {ur . >0 L< Ur

Then the rarefaction wave is given by
w o< fi(u)t
u@t) =4 g(3) © Fla)t<o< )t

ur :ox > f(up)t

an integral solution of the Riemann problem.

20.



Definition: (Entropy Condition)
An integral solution is called entropy solution, if the solution fulfills the entropy

condition or Lax-Oleinik condition:
There exists C' > 0, such that for all z,z € R, ¢t > 0 with z > 0 it holds:

u(t,x + z) —u(t,z) < %z

21.



ation)

5. PDEs of
Second Order

Definition: (PDE of 2™ Order)

A linear partial differential equation of 2°¢ order in n variables is defined by

3 isttage, + ) bite, + fu=g.
=1

fi=1

Here the terms a;;, by, f, and g are functions of x = (z1,...,7,) 7.

Definition: (Classification of Partial Differential Equations of 2 Order)
Definition: (Well-Posad Problem) Let the PDE of 2 crder (A = (ay7); 1., constant and symmetric)
A L (or L ) consists of

v T
© & partial differential equation, defined on s domain, and (VIAT)u+ (b V)u+ fu=g.

@ a 30 of ntia andyor boundary conditions, Let Ay, An be the eigenvalues of matrix A
such that the following properties are fulfilled: LA #Oforalli = n and if all A, have equal sign, the equation is
"
1 1ce. There exists at least one solution, that fulfills all above conditions; called
) e i s 2.1 A # 0 for all§ = 1,....,n and if one eigenvalue has different sign to all
! e ather n — 1 eigenvalues, the equation is called by
3 The solt vends the initial /bound: dition:
e solution depends cont. on oundary conditions 3. 1f A = 0 for at least one k € {1,...,n}, the equation is called parab
1. The eliptic Lspiace cquation
Au=o
2. The hyperbolic ation
uy - Au=

3. The parabolic heat equat

22.



Definition: (PDE of 2" Order)
A linear partial differential equation of 2"¢ order in n variables is defined by

Z QijUg,e; + Z biug, + fu=g.
i—1

1,7=1

Here the terms a;;, b;, f, and g are functions of x = (z1,...,2,)".

23.



Definition: (Classification of Partial Differential Equations of 2"9 Order)
Let the PDE of 2" order (A = (@ij)i,j=1...n constant and symmetric)

(VIAV)u+ (b'V)u+ fu=g.
Let A\q,..., A, be the eigenvalues of matrix A.

1. If X\; #0 for all « = 1,...,n and if all \; have equal sign, the equation is
called elliptic.

2. If \; # 0 for all # = 1,...,n and if one eigenvalue has different sign to all
other n — 1 eigenvalues, the equation is called hyperbolic.

3. If Ay =0 for at least one k € {1,...,n}, the equation is called parabolic.

24,



1. The elliptic Laplace equation
Au = 0.

2. The hyperbolic wave equation

Ut — Au = 0.

3. The parabolic heat equation
Uy = Au.

25.



Definition: (Well-Posed Problem)
A correctly posed problem (or well-posed problem) consists of

e a partial differential equation, defined on a domain, and
e a set of initial and/or boundary conditions,
such that the following properties are fulfilled:
1. Existence: There exists at least one solution, that fulfills all above conditions;
2. Uniqueness: The solution is unique;

3. Stability: The solution depends cont. on the initial/boundary conditions

26.



6. Laplace's
Equation

Definition: (Laplace’s and Poisson's Equation)
Let u € C3(R") be a twice cont. differentiable function. x € D C R" open.
e ufx). Then Lagla 1 given by
Au=0.
is defined as
Auwf
with a given right hand sde f = f(x)

Definition: (Green's Function) . Definition: (Fundamental Solution of Laplace's Equation)
Let U C K" be open and @*(y) the solution of Dirichlet’s Problem The function ®(x), x € R", x # 0, given by

AT = 0 inU

' Llglz]  (n=2)
& = dly- J =\ = ’
(y—x) ondl *) { e =l (n 2 3)
Then Green's function G on U is defined by

is called fundamental solution of Laplace’s equation.

Glx,y) =2y —x) - ¥*(y) xyeUx#y.

Proposition: (Mean Value Proparty of Harmonic Functions)
Let U € R" be an open set. If u € C(U) is harmonic, then for each ball Bix,r) € U

»m:f uds=]1 wdy
misn) Bar)

Proposition: (Unique Solvability of Boundary Value Problem)
Let g € C(aU) and { € C(). Then there is at most one solution
u € C3U) N C(T) of the boundary value problem
~Au = f iU
w = g ondU.

27.
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Definition: (Laplace’s and Poisson’s Equation)
Let u € C?(R™) be a twice cont. differentiable function, x € D C R"™ open,

u = u(x). Then Laplace's equation is given by
Au = 0.

Poisson's equation is defined as

—Au = f
with a given right hand side f = f(x).

28.



Definition: (Fundamental Solution of Laplace's Equation)
The function ®(x), x € R”, x # 0, given by

—35. log ||z (n=2)
i) — 27 n
(x) { n(n_é)a(n) [Edlk (n > 3)

Is called fundamental solution of Laplace’s equation.

Proposition: (Representation of Solution of Poisson’s Equation)
A solution to Poisson’s equation

“Au=f inR"

is given by

30.



Proposition: (Mean Value Property of Harmonic Functions)
Let U C R” be an open set. If u € C2(U) is harmonic, then for each ball B(x,r) c U

u(x)=]l udS=][ udy.
0B(x,r) B(x,r)

Proposition: (Unique Solvability of Boundary Value Problem)
Let g € C(OU) and f € C(U). Then there is at most one solution
u € C?(U) N C(U) of the boundary value problem

—Au = f inU
u = g¢g onoU.



Definition: (Green's Function)
Let U C R™ be open and &7 (y) the solution of Dirichlet’'s Problem

A®* = 0 inU
®* = &(y—x) onIU.

Then Green's function G on U is defined by
G(X, y) = (I)(y - X) o (I)m(y) X,y € U’X 7é y.

Proposition: (Solution of Dirichlet Problem of Poisson’s Equation)
Let u € C?(U) be a solution of the Dirichlet problem of Poisson's equation. Then
u can be represented as

w6 = [ g Getey) dSe) + [ S6)Cy) dy (xe D),

f and g are the right hand side and boundary condition of the Dirichlet problem.



7. Green's Function

Definition: (Poisson Kernel)
The function
K(xy) = 2z, 1
Y na(m) -y

where x € R}, y € ORY} is called Poisson Kernel of R,

Proposition: (Dirichlet Problem for Laplace's Equation)
Let the boundary value problem

Au=0 in R
u=g on IR" ={x=(z1,...,2,)" 12, =0}

be given. Then the solution is given by Poisson’s integral form

u(x) = 2::../6 9&)_ 4

na(n) Jozy [x —y|"

34.



Definition: (Poisson Kernel)

The function
21, 1

KoY ) =y

where x € R", y € OR" is called Poisson Kernel of R”.

35.



Proposition: (Dirichlet Problem for Laplace's Equation)
Let the boundary value problem

Au=0 in R?
u=g on OR" ={x=(z1,...,%,) :z, =0}

be given. Then the solution is given by Poisson's integral form

u(x) = 22y L 9(y) dy.

na(n) R x —y|»

36.



8. Heat Equation

Definition: (Fundamental Solution to Heat Equation) The function

B(x,1) { e LA
0

is called fundamental solut

of the heat eq

Remark: (Solution to the Cauchy Problem)

By means of (x, t) the solution to the Cauchy problem

{,.,,A.,=n in

u=g on R"x (0}

can be represented by a convolution integral:

wt) = [ wx-y.0u) dy

Proposition: (Mean Value Property of Heat Equation)
If u€ CH(U,) is 2 solution of the heat equation, then

=1 Ix — y[*
for each set E(x,t;r) C U.
Proposition: (Unique Solution of Heat Equation)
The initial value problem
u-Au =f inl,
u =g aflr

on the bounded domain Ur with continuous functions f and g
has at most one solution u € C3(Ur) NC(TF).

(xeR",t>0)
(x€eR"t<0)

The inhomogeneous initial value problem with inhomogeneous initial conditions

{u,f.‘lu =f  inR"x]0,00
u(x,0) =gix) onR"x{t=0}

has the solution

u(x,t) = ]. @(x -y, 1)gly) dy +j: j;( S(x —y,t —5)fly,5) dyds.

37.



Definition: (Fundamental Solution to Heat Equation) The function

2

1 —% n
P (x,1) ::{ er i (xeR%E>0)

(47rt)%
0 (x € R",t < 0)

is called fundamental solution of the heat equations.

Remark: (Solution to the Cauchy Problem)
By means of ®(x,t) the solution to the Cauchy problem

ug —Au =0 in R"x]0, 00|
u=g on R"x {0}

can be represented by a convolution integral:

uxt) = [ @(x-y.t(y) dy

38.



The inhomogeneous initial value problem with inhomogeneous initial conditions

{ ug —Au = f in R™x]0, oo
u(x,0) =g(x) onR"” x {t =0}

has the solution

uxt)= [ Sx-y.0gy) dy+ [ [ ®Gx=y,t-9)f(y.s) dyds

39.



Proposition: (Mean Value Property of Heat Equation)
If u € C?(U,) is a solution of the heat equation, then

1 x —y|*
t) = dyd
U(X, ) /E(x,t;r) (t o 8)2 u(Y7 S) e

for each set E(x,t;r) C Us.

Proposition: (Unique Solution of Heat Equation)
The initial value problem

Ut—AU :f inUt
u =g auf I'p

on the bounded domain Ur with continuous functions f and g
has at most one solution u € C%(UT) NC(Ur).



9. Wave Equation

Proposition: (Formula of d'Alembert)
A solution of the one-dimensional initial value problem

u

o =h onRx{t

with g,k initial conditions, is given by the forrmula

-
ulz,t) = %[_q(z+r] +glz-t)+ %/ ) dy.

Remark: (Poisson's Formula for n = 2)
The solution of the initial value problem of the wave equation

Uy = Bu=0  in R*X]0, cof
L uy=h onRYx(1=0}

for x € R2, 1> 0 is given by (Poisson’s formula):

][ 120
a8,00)

Remark: (Kirchhoff's Formula for = 3)
The solution to the initial value problem of the wave equation
Uy = Bu=0 in R0, cof
u=g u=h oaR*x{r=0}
for x €R3, 1> 0is given by (K

)t

ulx,ty ’J[ (th(y) + 80) + Dg(y) - (y — x)) dS()
a8,

{ Ut~ Uge =0 in R x [0,00],
0},

f d'Alembert:

Conclusion: (Reflection of half space )
A solution of the initial value problem

{ Uee = sy = 0 in Ry x]0,00]

u=gu=h onRyx{t=
w=0 on {x=0}x]0,o00]

is given by

Holw+8) +glz— 0]+ 3 [ hy) dy  forzzt20
ol +0) —g(-z+ 0]+ 11 hy) dy for0<z <t

u(z, 1

—_——

Remark: (Maan/Average over Sy
A of u(x.r) cver the Sphere B, (x) (o OB(x.r))

) :=]( ) dSO).
m

Furthermore, let

Gxir) i= )1 50 dS©)
m i)

Hix.r) f hiy) dS()
8,000

Proposition: (Euler-Poisson-Darboux Equation,
let x € R™ be fixed and u a solution of the wave equation

up —Au=0 inR"x]0, 00|
u=g. u=h onR"x{t=0}

Then U{a;r,t) solves the EulerPois

sson-Darboux equation
{Un-lh
U=

in R x]0, 50
H onRy x {t=0}

41.

phere) For x € R", 1> 0 and r > 0 define the



Proposition: (Formula of d'Alembert)
A solution of the one-dimensional initial value problem

Utt — Uge = 0 in R X [0, o0,
u=g,us =h onRx{t=0},

with g, h initial conditions, is given by the formula of d'Alembert:

-+t
ua.t) = 3loe+ ) +a@—0l+3 [ A dy

42.



Conclusion: (Reflection of half space R, )
A solution of the initial value problem

Ut — Uzz = 0 in Ry x]0, 00]
u=g,us=h onRy x {t=0}
u=0 on {x=0}x]0,00]

is given by

u(zx,t) = {

gz +t)+glz—t)+L[TTh(y)dy  forz>t>0
g(z+t) —g(—z+ )]+ L [T h(y)dy for0<az<t

N DN =

43.



Remark: (Mean/Average over Sphere) For x € R", t > 0 and r > 0 define the
Average of u(x,t) over the Sphere dB,(x) (or 0B(x,r))

U(x;r,t) I=][ u(y,t) dS(y).
0B,(x)
Furthermore, let
G(x;r) = ]l g(y) dS(y)
0B, (x)
H(x,r) := ][ h(y) dS(y)
0B,.(x)

a4.



Proposition: (Euler-Poisson-Darboux Equation)
let x € R™ be fixed and u a solution of the wave equation

uge — Au =0 in R"x]0, oo
u=g, uy=h onR" x {t =0}

Then U(x;r,t) solves the Euler-Poisson-Darboux equation

Ui — Upr — 22U, =0 in Ry x]0, 00]
UZG, UtZH OhR+X{t=O}

45.



Remark: (Kirchhoff's Formula for n = 3)
The solution to the initial value problem of the wave equation

u, —Au=0 in R3]0, oo
u=g, u,=h onR3x{t=0)}

for x € R3, t > 0 is given by (K. off ):

u(x,t) = ]é B )(th(y) +g(y)+ Dg(y) - (y — x)) dS(y)



Remark: (Poisson’s Formula for n = 2)
The solution of the initial value problem of the wave equation

u, —Au=0 in R?x]0, o[
u=g, u,=h onR?x{t=0]}

for x € R?, t > 0 is given by (Poisson’s formula):

1 7[ tg(y) + t°h(y) + tDg(y) - (y — x) dy
2 JoB,(x)

u(x,t) = = 1
> — |y — x|?)2



10. Fourier Method

e (Corast Agraduaa Sk f 10 Pomen's Eqtin)
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Remark: (General Approximate Solution of 1D Poisson’s Equation)

e Let the one-dimensional boundary value problem be given:

{ —Tj%f f(z), O0<zx<l,
u(0) = u(l) 0.

e Approximate the right hand side f(z) by a finite Fourier series fy(x):
al nmx
In(z) = ,;cn sin (T) :

e The Fourier coefficients are (n =1,...,N)

Cn = %/Olf(x) sin (mlr_ac) dx.

e Then an approximate solution of the boundary value problem is given by:

49.



Remember: (Heat Equation) Consider the initial boundary value problem of the
heat equation:

Ut — Uge = f(z,t)  O<xe<l, 0<t<T,
u(z,0) = g(x) : 0<x <,
u(0,t) = wu(l,t) =0 : 0<t<T.

We look for a solution in form of a Fourier series:

un(z) = ian(t) sin (Zﬂ) :

50.



Periodic Boundary Conditions

Let the initial boundary value problem be given on interval [, []:

Periodic functions on [—[,1] are

nnx nnx

v@) =1, () =cos (T2, @) =sin (V)

satisfy the given Neumann boundary conditions.

A solution approach using Fourier series thus reads

w(z,t) = ao(t) + Z (an(t) cos (””) + by (t) sin (”li‘”

(U — Uz = f(z,t) : —l<z<l, 0<t<T,
u(z,0) = g(x) . =l <zx <,
Y u(=Lt) = u(t) : 0<t<T,
| ue(=0,t) = wug(l,t) : 0<t<T.

)

51.



Die Losung des Anfangsrandwertproblems

[ wyp — uge = O C0<e<,0<t<T
u(z,0) = g(x) c 0<z<
u(xz,0) = h(x)  0<x<
w(0,t) = u(l,t) =0 : 0<t<T

Ist gegeben durch
> nw dnl n nmwx
t) = bn —t —— Si —t ' —_—
u(z, 1) n;{ Cos(l )+n7rsm(l )}S'n( l )

Dabei sind b,, die Fourier—Koeffizienten der Entwicklung der vorgegeben
Anfangsbedingung u(x,0) = g(x) und d,, die entsprechenden
Koeffizienten von us(z,0) = h(x).
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11. Numerical
Methods for Elliptic
Equations

Model Problem
~Au=f inQ=[0,12€cR?
u=0 ond

A4

Finite Differences Finite Volumes
P

Linear System of Equations

Lpup = fr

rier Methnd
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Model Problem

f
0

Solution

n Q: [0’ 1]2 c R2

on Of

—Au
U

f 'A'A':’ )
/)
e
’

VY
\/
'Ué

¢/

V)
\/ YA
7

a4 "‘,‘

YV,
NAANNNADS
AAAA DG

y Avavy,
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Finite Differences

Discretize the differential operator

—A=L%Lh

du  u(wiy1) — u(z;)

here: = A

+ O(A(E), Ax = Ti+1 — Tj.

55.



Ou  Uip1j — Ui-1j 2
- ’ = 4+ O(A
ox 2Ax +0(Az7)
0%u Uig1,j — 2U; 5 + Uj—1
_ ditl, i, 1—1, O(A 2
Ox? Ax? +O(A)
Ay — AU j — Wip1,5 — Ui—1,5 —

u%3+1

Ui, j—1

Ax?

+ O(Az?)
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Finite Volumes

Discretize the flux form

57.



/fda:z— 6—uds
E;

aE; On

~ —/ 3h,nuh ds — / 6h,nuh ds — / ah,n'uh ds — / Bh,nuh ds

Onnup: finite difference approximation o

/ Onntin ds = Az - [un(Tit1,Y5) — un (@i Y5) |
OEi L

Az

/ Oh,nup ds = Az - un(@i yj1) = un(s yj)
OEi 2 L

Az

/ Ohnup ds = Az - (Un(@iz1,95) = un(@iry;)|
OEi,3 L

Az

/ Ot ds = Az un(Zi, yj—1) — un(Ti, ;)
OF; 4 L

Az

(]
5 OF; 2
fou
OF; 3
© ) -
0FE; 1
OF; 4
Q
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Finite Elements

"Discretize function space”

—Au=f in€), wu=0on 01,

=>/—Aug0da::/fg0da; Vo
Q Q

:>/Vu-Vgada:=/fgada: Vo
Q Q
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Now, replace the variational problem a(up,vy) = f(vn) by

uza(QOMQOJ):f(SOJ)? Viaj::lv“wNa

since up = Y U; ;.
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Linear System of Equations

Lyup = f




12. Numerical
Methodes for
Transport Equation

Lagrangian Perspective

/M [

ey

Algorithm

Particle position can be computed by

With indial condition (2 = 0) =z,

Problem: Passive adveetion (s = 0)

':7 = w(x,t), x(0)=xq,
dp
'1: 0, plx,0) = plz).

= by any ODE solver,
o Solve % = 0 by fnite difference.

do _ plet™t — plaien)
@™ ar

=pt=p.
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Lagrangian Perspective
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e Position: = = x(t).
e Velocity: v = v(x,t).
Particle position can be computed by
. dx
r= —
dt

With initial condition — z(t = 0) = z

= v(x,t)
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Problem: Passive advection (s = 0):

dx
o = v(z,t), x(0)= xo,
d
d_i = 0, p(an)ZPO(x)°

Strategy:

e Solve ‘fl—f = v by any ODE solver,

e Solve %‘tg = 0 by finite difference.

dp _ p(xi, t" — p(a; ")
dt At

=0

=>p+:p_.

Ti, 1 [ : N grid points, t", n [ : M time steps.
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Algorithm
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Society and Partial
Differential Equations

Natural Hazards form the
Interface to Society

Gobal Change
Impact on Society

Prevention
Mitigation
Planning

Deterministic Approach

+ Uncerstanding the physical principle
« Physical model for probabilistic methods
« Solve differential equations!

W ¥ (o) + V070) = S(0)
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Natural Hazards form the

Interface to Society
| Ty *&% Py

Gobal Change
Impact on Society

Prevention
Mitigation
Planning
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Deterministic Approach

- Uncerstanding the physical principle
- Physical model for probabilistic methods
- Solve differential equations!

% £V () + V(0Vp) = S(p)
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Examples

Tsunami Storm Surge

Oil Spill

Volcano Ash Dispersion
- =




Tsunami

ov
— +(v:-V)v+gVn =R,
ot
on
T (Hv)
R=—fkxv—rH 'vlv|+ H 'V(K,HVv)
Terms:
« Coriolis

- Bottom friction
+ Viscosity (Smagorinsky approach)




Storm Surge

)
(‘—V+(V-V)v+gVu:R,
ot

on

— -(Hv) =0.

5t + V- (Hv)




Oil Spill

aliﬁlﬁ-ii-i?lﬂﬁl—-§7-(kdf?Kbu)=='li

Poil

ot

kg = oboit (w = poit)
pwky
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Volcano Ash Dispersion

% + V- (vp)+V(vVp) =S(p)
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