Differential Equations II

Wrap Up

1. Introduction

Physical Principles of PDEs

Variational Principle

Continuity Equation

General Definition

$$\begin{split} F\left(x_{s}u(x),\frac{\partial u}{\partial x_{1}},\dots,\frac{\partial u}{\partial x_{s}},\dots,\frac{\partial^{s}u}{\partial x_{s}},\frac{\partial^{s}u}{\partial^{s}u_{2}\partial x_{2}},\dots,\frac{\partial^{s}u}{\partial x_{s}}\right) = 0 \\ \text{for an unknown function } u:D \to \mathbb{R}^{n}, \quad C \in \mathbb{R}^{n}: \text{ is added system of partial differential equations (POE) for the } n functions <math>u_{1}(x),\dots,u_{m}(x). \end{split}$$

If one of the partial derivatives occurs explicitly and is of p^{th} order $(\frac{\partial^{r_{th}}}{\partial^{p_{th}}x_{1}\cdots\partial^{p_{th}}x_{m}})$, then we call the PDE of order p.

Physical Principles of PDEs

Conservation Principle

Idea: Derive PDE from physical lae (conservation)!

Variational Principle

Idea: Derive PDE from physical law (Minimization)!

Membrane = Minimal surface

Minimization problem: minimize bending energy

$$J=\int_\Omega \sqrt{1+\partial_{x_1}u^2+\partial_{x_2}u^2}\ dx_1dx_2\stackrel{!}{=}\min$$

$$u|_{\partial\Omega}=\phi$$

General Definition

Definition: (Partial Differential Equation)
An equation resp. a system of equations of the form

$$\mathbf{F}\left(\mathbf{x},\mathbf{u}(\mathbf{x}),\frac{\partial\mathbf{u}}{\partial x_1},\ldots,\frac{\partial\mathbf{u}}{\partial x_n},\ldots,\frac{\partial^p\mathbf{u}}{\partial x_n},\frac{\partial^p\mathbf{u}}{\partial x_1},\frac{\partial^p\mathbf{u}}{\partial x_1},\ldots,\frac{\partial^p\mathbf{u}}{\partial x_n}\right) = \mathbf{0}$$

for an unknown function $\mathbf{u}:D\to\mathbb{R}^m$, $D\subset\mathbb{R}^n$, is called system of partial differential equations (PDE) for the m functions $u_1(\mathbf{x}),\ldots,u_m(\mathbf{x})$.

If one of the partial derivatives occurs explicitly and is of p^{th} order $(\frac{\partial^p \mathbf{u}}{\partial^{p_1} x_1 \cdots \partial^{p_n} x_n})$, then we call the PDE of order p.

Remark: In applications we see typically (systems of) PDE of first and second order.

Continuity Equation

Continuity Equation:

- Let $\rho(\mathbf{x},t)$ be mass density of a physical constituent (e.g. fluid density).
- Assume a conservation principle of the form

$$\frac{d}{dt} \int_{D_t} \rho(\mathbf{x}, t) d\mathbf{x} = 0.$$

· According to Reynold's transport theorem it holds:

$$\int_{D_{t}} \left[\frac{\partial}{\partial t} \rho + \nabla \cdot (\rho \mathbf{v}) \right] (\mathbf{x}, t) d\mathbf{x} = 0.$$

ullet Since $D_t\subset \mathbb{R}^n$ arbitrary subset, the PDE (continuity equation) holds:

$$\frac{\partial}{\partial t} \rho(\mathbf{x}, t) + \nabla \cdot (\rho \mathbf{v})(\mathbf{x}, t) = 0.$$

Flux Function

• Write the continuity eq. by means of a flux function q(x,t):

$$\frac{\partial}{\partial t}\rho(\mathbf{x},t) + \nabla \cdot \mathbf{q}(\mathbf{x},t) = 0.$$

ullet Avoid two unknowns ho and ${f q}$ in one equation by

$$\mathbf{q}(\mathbf{x},t) = \mathbf{q}(\rho(\mathbf{x},t), \nabla \rho(\mathbf{x},t), \ldots).$$

 \bullet Example: the flux ${\bf q}$ is proportional to the density $\rho,$ i.e.

$$\mathbf{q}(\mathbf{x},t) = \mathbf{a} \cdot \rho(\mathbf{x},t), \quad \mathbf{a} \in \mathbb{R}^n.$$

• Then we obtain the (transport equation):

$$\frac{\partial}{\partial t} \rho(\mathbf{x}, t) + \mathbf{a} \cdot \nabla \rho(\mathbf{x}, t) = 0.$$

Continuity Equation:

- Let $\rho(\mathbf{x},t)$ be mass density of a physical constituent (e.g. fluid density).
- Assume a conservation principle of the form

$$\frac{d}{dt} \int_{D_t} \rho(\mathbf{x}, t) \ d\mathbf{x} = 0.$$

According to Reynold's transport theorem it holds:

$$\int_{D_t} \left[\frac{\partial}{\partial t} \rho + \nabla \cdot (\rho \mathbf{v}) \right] (\mathbf{x}, t) \ d\mathbf{x} = 0.$$

• Since $D_t \subset \mathbb{R}^n$ arbitrary subset, the PDE (continuity equation) holds:

$$\frac{\partial}{\partial t}\rho(\mathbf{x},t) + \nabla \cdot (\rho \mathbf{v})(\mathbf{x},t) = 0.$$

Flux Function:

• Write the continuity eq. by means of a flux function $\mathbf{q}(\mathbf{x},t)$:

$$\frac{\partial}{\partial t}\rho(\mathbf{x},t) + \nabla \cdot \mathbf{q}(\mathbf{x},t) = 0.$$

• Avoid *two* unknowns ρ and \mathbf{q} in *one* equation by

$$\mathbf{q}(\mathbf{x},t) = \mathbf{q}(\rho(\mathbf{x},t), \nabla \rho(\mathbf{x},t), \ldots).$$

• Example: the flux ${\bf q}$ is proportional to the density ρ , i.e.

$$\mathbf{q}(\mathbf{x},t) = \mathbf{a} \cdot \rho(\mathbf{x},t), \quad \mathbf{a} \in \mathbb{R}^n.$$

• Then we obtain the (transport equation):

$$\frac{\partial}{\partial t}\rho(\mathbf{x},t) + \mathbf{a} \cdot \nabla \rho(\mathbf{x},t) = 0.$$

2. Method of Characteristics

Definition: The autonomous system of ODEs

```
Is called Characteristic System of Differential Equations corresponding to a homogeneous linear PDE \sum_{i=1}^n a_i(\mathbf{x}) u_{x_i} = 0, \quad \mathbf{x} \in \mathbb{R}^n. Definition (Cauchy Problem) \sum_{i=1}^n a_i(\mathbf{x}) u_{x_i} = 0, \quad \mathbf{x} \in \mathbb{R}^n. Definition (Cauchy Problem) \sum_{i=1}^n a_i(\mathbf{x}) u_{x_i} = 0, \quad \mathbf{x} \in \mathbb{R}^n. The characteristic system of OCIs reads. \left\{ u_{x_i} = u_{x_i} + u_{x_i} + (u_{x_i} + v_{x_i}^*) u_{x_i} = b(\mathbf{x}, t, u) \right. on \mathbb{R}^n \times (0, \infty) is called Cauchy Problem.
```

Definition: The autonomous system of ODEs

$$\dot{\mathbf{x}(t)} = \mathbf{a}(\mathbf{x}(t))$$

Is called **Characteristic System of Differential Equations** corresponding to a homogeneous linear PDE

$$\sum_{i=1}^{n} a_i(\mathbf{x}) u_{x_i} = 0, \quad \mathbf{x} \in \mathbb{R}^n.$$

Example: Consider the PDE in three variables

$$xu_x + yu_y + (x^2 + y^2)u_z = 0.$$

The Characteristic system of ODEs reads:

$$\dot{x} = x
\dot{y} = y
\dot{z} = x^2 + y^2$$

The general solution is

$$x(t) = c_1 e^t$$

$$y(t) = c_2 e^t$$

$$z(t) = \frac{1}{2} (c_1^2 + c_2^2) e^{2t} + c_3$$

Definition (Cauchy Problem):

The initial value problem defined on the whole \mathbb{R}^n

$$\begin{cases} u_t + \sum_{i=1}^n a_i(\mathbf{x}, t, u) u_{x_i} = b(\mathbf{x}, t, u) & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = u_0 & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

is called Cauchy Problem.

3. Conservationlaws

Proposition (Rankine-Hugonist condition) If x = u(1) is a shock most of a Brock wave solution of $u_0 + f(u)_c = 0$, then for the shock upwer d(t) the Rankine-Hugonic condition helds: $= \underbrace{\left[\int_{0}^{t} \frac{f(u(u(1)^{-},t)) - f(u(u(1)^{-},t))}{u(u(0)^{-},t) - d(u(1)^{-},t)} \right] \cdot \frac{f(u(u)^{-},t)}{u(u(1)^{-},t)}}_{u=u(1)^{-},u(1)^{-},t}$ **Example**: (Burgers' Equation)

Burgers' Gleichung is given by the flux function $f(u)=\frac{u^2}{2}$, resp. by the Cauchy problem

$$egin{array}{lll} u_t + u u_x = & 0 & & ext{in } \mathbb{R} imes]0, \infty[\\ u = & u_0 & & ext{on } \mathbb{R} imes \{t=0\} \end{array}$$

- The solution is given by $u(t) = x_0 + tu_0(x_0)$.
- If u_0 is given by

$$u_0(x) = \begin{cases} 1 & : & x \le 0 \\ 1 - x & : & 0 < x < 1 \\ 0 & : & x \ge 1 \end{cases}$$

then x(t) develops a singularity for $t \to 1$.

- A classical solution of Burgers' equation exists only locally for $0 \le t < 1$.
- The local solution for $t \in [0,1[$ is:

$$u(x,t) = \begin{cases} 1 & : & x < 1 \\ \frac{(1-x)}{(1-t)} & : & 0 \le t \le x \le 1 \\ 0 & : & x > 1 \end{cases}$$

Definition: (weak solution)

A function $u \in L^{\infty}(\mathbb{R} \times [0, \infty[)$ is called integral solution or weak solution of the conservation law $u_t + f(u)_x = 0$, if for all test functions v:

$$\int_0^\infty \int_{-\infty}^\infty (uv_t + f(u)v_x) \ dxdt + \int_{-\infty}^\infty u_0(x)v(x,0) \ dx = 0.$$

Definition: (shock wave solution)

A shock wave solution u is a weak solution of the conservation law

$$u_t + f(u)_x = 0$$

if a shock front x=s(t), $s\in C^1$ exists, such that u is a classical solution for each x< s(t) and x>s(t) and u has a jump at x=s(t) with height

$$[u](t) = u(s(t)^+, t) - u(s(t)^-, t) = u_r - u_l.$$

 $\dot{s}(t)$ is called shock speed.

Proposition: (Rankine-Hugoniot condition)

If x = s(t) is a shock front of a shock wave solution of $u_t + f(u)_x = 0$, then for the shock speed $\dot{s}(t)$ the Rankine-Hugoniot condition holds:

$$\dot{s} = rac{[f]}{[u]} = rac{f(u(s(t)^-,t)) - f(u(s(t)^+,t))}{u(s(t)^-,t) - u(s(t)^+,t)} = rac{f(u_l) - f(u_r)}{u_l - u_r}.$$

4. Entropy **Condition**

Proposition: (Rarefaction Wave) Let the Riemann problem with Burgers' equation $u_t+uu_x=0$ in $\mathbb{R}\times]0,\infty[$ and $u(x,t=0)=x_0$ be given. Let

$$u_0(x) = \left\{ \begin{array}{ll} u_l & : & x \leq 0 \\ u_r & : & x > 0 \end{array} \right. \quad \text{with } u_l < u_r.$$

Then the rarefaction wave is given by

$$u(x,t) = \left\{ \begin{array}{ll} u_l & : & x < f'(u_l)t \\ g(\frac{x}{t}) & : & f'(u_l)t \leq x \leq f'(u_r)t \\ u_r & : & x > f'(u_r)t \end{array} \right.$$

an integral solution of the Riemann problem.

Definition: (Entropy Condition)
An integral solution is called entropy solution, if the solution fulfills the entropy

condition or Lax-Oleinik condition: There exists C>0, such that for all $x,z\in\mathbb{R},\ t>0$ with z>0 it holds:

$$u(t,x+z)-u(t,x)<\frac{C}{t}z.$$

Proposition: (Rarefaction Wave)

Let the Riemann problem with Burgers' equation $u_t + uu_x = 0$ in $\mathbb{R} \times]0, \infty[$ and $u(x,t=0) = x_0$ be given. Let

$$u_0(x) = \begin{cases} u_l & : & x \le 0 \\ u_r & : & x > 0 \end{cases} \quad \text{with } u_l < u_r.$$

Then the rarefaction wave is given by

$$u(x,t) = \begin{cases} u_l : & x < f'(u_l)t \\ g(\frac{x}{t}) : & f'(u_l)t \le x \le f'(u_r)t \\ u_r : & x > f'(u_r)t \end{cases}$$

an integral solution of the Riemann problem.

Definition: (Entropy Condition)

An integral solution is called entropy solution, if the solution fulfills the entropy condition or Lax-Oleinik condition:

There exists C>0, such that for all $x,z\in\mathbb{R}$, t>0 with z>0 it holds:

$$u(t, x + z) - u(t, x) < \frac{C}{t}z.$$

5. PDEs of **Second Order**

Definition: (PDE of 2nd Order)

A linear partial differential equation of 2^{nd} order in n variables is defined by

$$\sum_{i,j=1}^n a_{ij} u_{x_i x_j} + \sum_{i=1}^n b_i u_{x_i} + f u = g.$$

Here the terms a_{ij} , b_i , f, and g are functions of $\mathbf{x} = (x_1, \dots, x_n)^{\top}$.

a partial differential equation, defined on a domain, and

a set of initial and/or boundary conditions.

3. Stability: The solution depends cont. on the initial/boundary conditions

Definition: (Classification of Partial Differential Equations of 2^{nd} Order) Let the PDE of 2^{nd} order ($A=(a_{ij})_{i,j=1,\dots,n}$ constant and symmetric)

 $(\nabla^{\top} A \nabla)u + (\mathbf{b}^{\top} \nabla)u + fu = g.$

Let $\lambda_1, \dots, \lambda_n$ be the eigenvalues of matrix A.

- 1. If $\lambda_i \neq 0$ for all $i=1,\dots,n$ and if all λ_i have equal sign, the equation is called elliptic.
- 2. If $\lambda_i \neq 0$ for all $i=1,\dots,n$ and if one eigenvalue has different sign to all other n-1 eigenvalues, the equation is called hyperbolic.
- 3. If $\lambda_k=0$ for at least one $k\in\{1,\dots,n\}$, the equation is called parabolic.

1. The elliptic Laplace equation $\Delta u = 0. \label{eq:deltau}$

3. The parabolic heat equation $u_t = \Delta u. \label{eq:ut}$

Definition: (PDE of 2nd Order)

A linear partial differential equation of 2^{nd} order in n variables is defined by

$$\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{i=1}^{n} b_i u_{x_i} + f u = g.$$

Here the terms a_{ij} , b_i , f, and g are functions of $\mathbf{x} = (x_1, \dots, x_n)^{\top}$.

Definition: (Classification of Partial Differential Equations of 2^{nd} Order) Let the PDE of 2^{nd} order ($A = (a_{ij})_{i,j=1...,n}$ constant and symmetric)

$$(\nabla^{\top} A \nabla) u + (\mathbf{b}^{\top} \nabla) u + f u = g.$$

Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of matrix A.

- 1. If $\lambda_i \neq 0$ for all $i=1,\ldots,n$ and if all λ_i have equal sign, the equation is called elliptic.
- 2. If $\lambda_i \neq 0$ for all i = 1, ..., n and if one eigenvalue has different sign to all other n-1 eigenvalues, the equation is called hyperbolic.
- 3. If $\lambda_k = 0$ for at least one $k \in \{1, \dots, n\}$, the equation is called parabolic.

1. The elliptic Laplace equation

$$\Delta u = 0.$$

2. The hyperbolic wave equation

$$u_{tt} - \Delta u = 0.$$

3. The parabolic heat equation

$$u_t = \Delta u$$
.

Definition: (Well-Posed Problem)

A correctly posed problem (or well-posed problem) consists of

- a partial differential equation, defined on a domain, and
- a set of initial and/or boundary conditions,

such that the following properties are fulfilled:

- 1. Existence: There exists at least one solution, that fulfills all above conditions;
- 2. Uniqueness: The solution is unique;
- 3. Stability: The solution depends cont. on the initial/boundary conditions

6. Laplace's Equation

Definition: (Laplace's and Poisson's Equation) Let $u\in C^0(\mathbb{R}^n)$ be a twice cont. differentiable function, $\mathbf{x}\in D\subset \mathbb{R}^n$ open, $u=u(\mathbf{x})$. Then Laplace's equation is given by $\Delta u=0.$

Poisson's equation is defined as $-\Delta u =$ with a given right hand side $f = f(\mathbf{x})$.

Definition: (Green's Function) Let $U \subset \mathbb{R}^n$ be open and $\Phi^v(y)$ the solution of Dirichlet's Problem

 $\Delta \Phi^x = 0 \text{ in } U$ $\Phi^x = \Phi(\mathbf{y} - \mathbf{x}) \text{ on } \partial U.$

Then Green's function ${\cal G}$ on ${\cal U}$ is defined by

 $G(\mathbf{x}, \mathbf{y}) := \Phi(\mathbf{y} - \mathbf{x}) - \Phi^{x}(\mathbf{y}) \quad \mathbf{x}, \mathbf{y} \in U, \mathbf{x} \neq \mathbf{y}.$

Definition: (Fundamental Solution of Laplace's Equation) The function $\Phi(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq 0$, given by

 $\Phi(\mathbf{x}) = \begin{cases} -\frac{1}{2\pi} \log ||x|| & (n = 2) \\ \frac{1}{n(n-2)\alpha(n)} ||x||^{2-n} & (n \ge 3) \end{cases}$

is called fundamental solution of Laplace's equation.

Proposition: (Mean Value Property of Harmonic Functions) Let $U \subset \mathbb{R}^n$ be an open set. If $u \in C^2(U)$ is harmonic, then for each ball $B(\mathbf{x},r) \subset U$

 $u(\mathbf{x}) = \int_{\partial B(\mathbf{x}, \mathbf{r})} u \, dS = \int_{B(\mathbf{x}, \mathbf{r})} u \, d\mathbf{y}.$

Proposition: (Unique Solvability of Boundary Value Problem) Let $g\in C(\partial U)$ and $f\in C(U)$. Then there is at most one solution $u\in C^2(U)\cap C(\overline{U})$ of the boundary value problem

 $-\Delta u = f \text{ in } U$ $u = g \text{ on } \partial U$. **Definition**: (Laplace's and Poisson's Equation)

Let $u \in C^2(\mathbb{R}^n)$ be a twice cont. differentiable function, $\mathbf{x} \in D \subset \mathbb{R}^n$ open, $u = u(\mathbf{x})$. Then Laplace's equation is given by

$$\Delta u = 0.$$

Poisson's equation is defined as

$$-\Delta u = f$$

with a given right hand side $f = f(\mathbf{x})$.

Definition: (Fundamental Solution of Laplace's Equation) The function $\Phi(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq 0$, given by

$$\Phi(\mathbf{x}) = \begin{cases} -\frac{1}{2\pi} \log ||x|| & (n=2) \\ \frac{1}{n(n-2)\alpha(n)} ||x||^{2-n} & (n \ge 3) \end{cases}$$

is called fundamental solution of Laplace's equation.

Proposition: (Representation of Solution of Poisson's Equation) A solution to Poisson's equation

$$-\Delta u = f$$
 in \mathbb{R}^n

is given by

$$u(\mathbf{x}) = \int_{\mathbb{R}^n} \Phi(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) \ d\mathbf{y}.$$

Proposition: (Mean Value Property of Harmonic Functions) Let $U \subset \mathbb{R}^n$ be an open set. If $u \in C^2(U)$ is harmonic, then for each ball $B(\mathbf{x}, r) \subset U$

$$u(\mathbf{x}) = \int_{\partial B(\mathbf{x},r)} u \ dS = \int_{B(\mathbf{x},r)} u \ d\mathbf{y}.$$

Proposition: (Unique Solvability of Boundary Value Problem) Let $g \in C(\partial U)$ and $f \in C(U)$. Then there is at most one solution $u \in C^2(U) \cap C(\overline{U})$ of the boundary value problem

$$\begin{array}{rcl} -\Delta u & = & f & \text{in } U \\ u & = & g & \text{on } \partial U. \end{array}$$

Definition: (Green's Function)

Let $U \subset \mathbb{R}^n$ be open and $\Phi^x(\mathbf{y})$ the solution of Dirichlet's Problem

$$\begin{array}{rcl} \Delta\Phi^x & = & 0 & \text{in } U \\ \Phi^x & = & \Phi(\mathbf{y}-\mathbf{x}) & \text{on } \partial U. \end{array}$$

Then Green's function G on U is defined by

$$G(\mathbf{x}, \mathbf{y}) := \Phi(\mathbf{y} - \mathbf{x}) - \Phi^{x}(\mathbf{y}) \quad \mathbf{x}, \mathbf{y} \in U, \mathbf{x} \neq \mathbf{y}.$$

Proposition: (Solution of Dirichlet Problem of Poisson's Equation) Let $u \in C^2(\overline{U})$ be a solution of the Dirichlet problem of Poisson's equation. Then u can be represented as

$$u(\mathbf{x}) = \int_{\partial U} g(\mathbf{y}) \frac{\partial G}{\partial \mathbf{n}}(\mathbf{x}, \mathbf{y}) \ dS(\mathbf{y}) + \int_{U} f(\mathbf{y}) G(\mathbf{x}, \mathbf{y}) \ d\mathbf{y} \quad (\mathbf{x} \in U).$$

f and g are the right hand side and boundary condition of the Dirichlet problem.

7. Green's Function

Definition: (Poisson Kernel)

The function

$$K(\mathbf{x},\mathbf{y}) := \frac{2x_n}{n\alpha(n)} \frac{1}{|\mathbf{x} - \mathbf{y}|^n},$$

where $\mathbf{x} \in \mathbb{R}^n_+$, $\mathbf{y} \in \partial \mathbb{R}^n_+$ is called Poisson Kernel of \mathbb{R}^n_+ .

Proposition: (Dirichlet Problem for Laplace's Equation) Let the boundary value problem

$$\left\{ \begin{array}{ll} \Delta u = 0 & \text{in} & \mathbb{R}^n_+ \\ u = g & \text{on} & \partial \mathbb{R}^n_+ = \{\mathbf{x} = (x_1, \dots, x_n)^\top : x_n = 0\} \end{array} \right.$$

be given. Then the solution is given by Poisson's integral form

$$\iota(\mathbf{x}) = \frac{2x_n}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+} \frac{g(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^n} d\mathbf{y}.$$

Definition: (Poisson Kernel)

The function

$$K(\mathbf{x}, \mathbf{y}) := \frac{2x_n}{n\alpha(n)} \frac{1}{|\mathbf{x} - \mathbf{y}|^n},$$

where $\mathbf{x} \in \mathbb{R}^n_+$, $\mathbf{y} \in \partial \mathbb{R}^n_+$ is called Poisson Kernel of \mathbb{R}^n_+ .

Proposition: (Dirichlet Problem for Laplace's Equation) Let the boundary value problem

$$\begin{cases} \Delta u = 0 & \text{in} \quad \mathbb{R}^n_+ \\ u = g & \text{on} \quad \partial \mathbb{R}^n_+ = \{\mathbf{x} = (x_1, \dots, x_n)^\top : x_n = 0\} \end{cases}$$

be given. Then the solution is given by Poisson's integral form

$$u(\mathbf{x}) = \frac{2x_n}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+} \frac{g(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^n} d\mathbf{y}.$$

8. Heat Equation

Definition: (Fundamental Solution to Heat Equation) The function

$$\Phi(\mathbf{x}, t) := \begin{cases} \frac{1}{(4\pi t)^{\frac{1}{2}}} e^{-\frac{|\mathbf{x}|^2}{4t}} & (\mathbf{x} \in \mathbb{R}^n, t > 0) \\ 0 & (\mathbf{x} \in \mathbb{R}^n, t < 0) \end{cases}$$

is called fundamental solution of the heat equation

Remark: (Solution to the Cauchy Problem) By means of $\Phi(\mathbf{x},t)$ the solution to the Cauchy problem

$$\left\{ \begin{array}{ccc} u_t - \Delta u = 0 & \text{in} & \mathbb{R}^n \times]0, \infty[\\ u = g & \text{on} & \mathbb{R}^n \times \{0\} \end{array} \right.$$

can be represented by a convolution integra

$$u(\mathbf{x}, t) = \int_{\mathbb{R}^n} \Phi(\mathbf{x} - \mathbf{y}, t)g(\mathbf{y}) d\mathbf{y}$$

Proposition: (Mean Value Property of Heat Equation) If $u \in C^2_1(U_t)$ is a solution of the heat equation, then

$$u(\mathbf{x}, t) = \frac{1}{4r^n} \int_{E(\mathbf{x}, t; r)} \frac{|\mathbf{x} - \mathbf{y}|^2}{(t - s)^2} u(\mathbf{y}, s) d\mathbf{y} ds$$

for each set $E(\mathbf{x},t;r)\subset U_t.$

Proposition: (Unique Solution of Heat Equation) The initial value problem

$$\left\{ \begin{array}{rcl} u_t - \Delta u &= f & \text{in } U_t \\ u &= g & \text{auf } \Gamma_T \end{array} \right.$$

on the bounded domain U_T with continuous functions f and g has at most one solution $u\in C^2_1(U_T)\cap C(\overline{U_T})$.

The inhomogeneous initial value problem with inhomogeneous initial conditions

$$\left\{ \begin{array}{ll} u_t - \Delta u &= f & \text{in } \mathbb{R}^n \times]0, \infty[\\ u(\mathbf{x}, 0) &= g(\mathbf{x}) & \text{on } \mathbb{R}^n \times \{t = 0\} \end{array} \right.$$

has the solution

$$u(\mathbf{x},t) = \int_{\mathbb{R}^n} \Phi(\mathbf{x}-\mathbf{y},t) g(\mathbf{y}) \ d\mathbf{y} + \int_0^t \int_{\mathbb{R}^n} \Phi(\mathbf{x}-\mathbf{y},t-s) f(\mathbf{y},s) \ d\mathbf{y} ds.$$

Definition: (Fundamental Solution to Heat Equation) The function

$$\Phi(\mathbf{x},t) := \begin{cases} \frac{1}{(4\pi t)^{\frac{1}{2}}} e^{-\frac{|\mathbf{x}|^2}{4t}} & (\mathbf{x} \in \mathbb{R}^n, t > 0) \\ 0 & (\mathbf{x} \in \mathbb{R}^n, t < 0) \end{cases}$$

is called fundamental solution of the heat equations.

Remark: (Solution to the Cauchy Problem) By means of $\Phi(\mathbf{x},t)$ the solution to the Cauchy problem

$$\begin{cases} u_t - \Delta u = 0 & \text{in} \quad \mathbb{R}^n \times]0, \infty[\\ u = g & \text{on} \quad \mathbb{R}^n \times \{0\} \end{cases}$$

can be represented by a convolution integral:

$$u(\mathbf{x},t) = \int_{\mathbb{R}^n} \Phi(\mathbf{x} - \mathbf{y}, t) g(\mathbf{y}) d\mathbf{y}$$

The inhomogeneous initial value problem with inhomogeneous initial conditions

$$\begin{cases} u_t - \Delta u = f & \text{in } \mathbb{R}^n \times]0, \infty[\\ u(\mathbf{x}, 0) = g(\mathbf{x}) & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

has the solution

$$u(\mathbf{x},t) = \int_{\mathbb{R}^n} \Phi(\mathbf{x} - \mathbf{y}, t) g(\mathbf{y}) \ d\mathbf{y} + \int_0^t \int_{\mathbb{R}^n} \Phi(\mathbf{x} - \mathbf{y}, t - s) f(\mathbf{y}, s) \ d\mathbf{y} ds.$$

Proposition: (Mean Value Property of Heat Equation) If $u \in C_1^2(U_t)$ is a solution of the heat equation, then

$$u(\mathbf{x},t) = \frac{1}{4r^n} \int_{E(\mathbf{x},t;r)} \frac{|\mathbf{x} - \mathbf{y}|^2}{(t-s)^2} u(\mathbf{y},s) \ d\mathbf{y} ds$$

for each set $E(\mathbf{x}, t; r) \subset U_t$.

Proposition: (Unique Solution of Heat Equation) The initial value problem

$$\left\{ \begin{array}{ccc} u_t - \Delta u &= f & \text{in } U_t \\ u &= g & \text{auf } \Gamma_T \end{array} \right.$$

on the bounded domain U_T with continuous functions f and g has at most one solution $u \in C^2_1(U_T) \cap C(\overline{U_T})$.

9. Wave Equation

```
Proposition: (Formula of d'Alembert)
A solution of the one-dimensional initial value problem
```

$$\begin{cases}
 u_{tt} - u_{xx} = 0 & \text{in } \mathbb{R} \times [0, \infty[, \\ u = g, u_t = h & \text{on } \mathbb{R} \times \{t = 0\},
\end{cases}$$

with g,h initial conditions, is given by the formula of d'Alembert:

$$u(x, t) = \frac{1}{2}[g(x + t) + g(x - t)] + \frac{1}{2}\int_{x-t}^{x+t} h(y) dy.$$

Conclusion: (Reflection of half space R₊)
A solution of the *initial value problem*

$$\begin{cases}
 u_{tt} - u_{xx} = 0 & \text{in } \mathbb{R}_{+} \times]0, \infty[\\
 u = g, u_{t} = h & \text{on } \mathbb{R}_{+} \times \{t = 0\} \\
 u = 0 & \text{on } \{x = 0\} \times]0, \infty[
\end{cases}$$

is given by

$$u(x,t) = \begin{cases} \frac{1}{2}[g(x+t) + g(x-t)] + \frac{1}{2}\int_{x-t}^{x+t}h(y) \ dy & \text{for } x \geq t \geq 0 \\ \frac{1}{2}[g(x+t) - g(-x+t)] + \frac{1}{2}\int_{x-t}^{x+t}h(y) \ dy & \text{for } 0 \leq x \leq t \end{cases}$$

Remark: (Poisson's Formula for n = 2) The solution of the initial value problem of the wave equation

$$\int u_{tt} - \Delta u = 0 \text{ in } \mathbb{R}^2 \times]0, \infty[$$

for $x \in \mathbb{R}^2$, t > 0 is given by (Poisson's formula):

$$u(x,t) = \frac{1}{2} \int_{\partial B_t(x)} \frac{tg(y) + t^2h(y) + tDg(y) \cdot (y-x)}{(t^2 - |y-x|^2)^{\frac{1}{2}}} \; dy$$

Remark: (Mean/Average over Sphere) For $x \in \mathbb{R}^n$, t > 0 and r > 0 define the Average of u(x,t) over the Sphere $\partial B_r(x)$ (or $\partial B(x,r)$)

$$U(x; r, t) := \int_{\partial B_r(x)} u(y, t) dS(y).$$

Furthermore, let

$$G(x;r) := \int_{\partial B_r(x)} g(y) dS(y)$$

 $H(x,r) := \int_{\partial B_r(x)} h(y) dS(y)$

Remark: (Kirchhoff's Formula for n=3)
The solution to the initial value problem of the wave equation

$$\left\{ \begin{array}{ll} u_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^3 \times]0, \infty[\\ u = g, \ u_t = h & \text{on } \mathbb{R}^3 \times \{t = 0\} \end{array} \right.$$

for $x \in \mathbb{R}^3$, t > 0 is given by (Kirchhoff's Formula):

$$u(x,t) = \int_{\partial B_t(x)} (th(y) + g(y) + Dg(y) \cdot (y-x)) \ dS(y)$$

Proposition: (Euler-Poisson-Darboux Equation) let $x \in \mathbb{R}^n$ be fixed and u a solution of the wave equation

$$\left\{ \begin{array}{ll} u_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^n \times]0, \infty[\\ u = g, \ u_t = h & \text{on } \mathbb{R}^n \times \{t = 0\} \end{array} \right.$$

Then $U(x;\boldsymbol{r},t)$ solves the Euler-Poisson-Darboux equation

$$\left\{ \begin{array}{ll} U_{tt} - U_{rr} - \frac{n-1}{r}U_r = 0 & \text{in } \mathbb{R}_+ \times]0, \infty[\\ U = G, \ U_t = H & \text{on } \mathbb{R}_+ \times \{t=0\} \end{array} \right.$$

Proposition: (Formula of d'Alembert)

A solution of the one-dimensional initial value problem

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \mathbb{R} \times [0, \infty[, \\ u = g, u_t = h & \text{on } \mathbb{R} \times \{t = 0\}, \end{cases}$$

with g, h initial conditions, is given by the formula of d'Alembert:

$$u(x,t) = \frac{1}{2}[g(x+t) + g(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} h(y) \ dy.$$

Conclusion: (Reflection of half space \mathbb{R}_+) A solution of the *initial value problem*

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \mathbb{R}_+ \times]0, \infty[\\ u = g, u_t = h & \text{on } \mathbb{R}_+ \times \{t = 0\}\\ u = 0 & \text{on } \{x = 0\} \times]0, \infty[\end{cases}$$

is given by

$$u(x,t) = \begin{cases} \frac{1}{2} [g(x+t) + g(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} h(y) \ dy & \text{for } x \ge t \ge 0 \\ \frac{1}{2} [g(x+t) - g(-x+t)] + \frac{1}{2} \int_{-x+t}^{x+t} h(y) \ dy & \text{for } 0 \le x \le t \end{cases}$$

Remark: (Mean/Average over Sphere) For $x \in \mathbb{R}^n$, t > 0 and r > 0 define the Average of u(x,t) over the Sphere $\partial B_r(x)$ (or $\partial B(x,r)$)

$$U(x;r,t) := \int_{\partial B_r(x)} u(y,t) \ dS(y).$$

Furthermore, let

$$G(x;r) := \int_{\partial B_r(x)} g(y) dS(y)$$

$$H(x,r) := \int_{\partial B_r(x)} h(y) dS(y)$$

Proposition: (Euler-Poisson-Darboux Equation) let $x \in \mathbb{R}^n$ be fixed and u a solution of the wave equation

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^n \times]0, \infty[\\ u = g, \ u_t = h & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

Then U(x;r,t) solves the Euler-Poisson-Darboux equation

$$\begin{cases} U_{tt} - U_{rr} - \frac{n-1}{r}U_r = 0 & \text{in } \mathbb{R}_+ \times]0, \infty[\\ U = G, \ U_t = H & \text{on } \mathbb{R}_+ \times \{t = 0\} \end{cases}$$

Remark: (Kirchhoff's Formula for n = 3)

The solution to the initial value problem of the wave equation

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^3 \times]0, \infty[\\ u = g, \ u_t = h & \text{on } \mathbb{R}^3 \times \{t = 0\} \end{cases}$$

for $x \in \mathbb{R}^3$, t > 0 is given by (Kirchhoff's Formula):

$$u(x,t) = \int_{\partial B_t(x)} (th(y) + g(y) + Dg(y) \cdot (y - x)) \ dS(y)$$

Remark: (Poisson's Formula for n = 2)

The solution of the initial value problem of the wave equation

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^2 \times]0, \infty[\\ u = g, \ u_t = h & \text{on } \mathbb{R}^2 \times \{t = 0\} \end{cases}$$

for $x \in \mathbb{R}^2$, t > 0 is given by (Poisson's formula):

$$u(x,t) = \frac{1}{2} \int_{\partial B_t(x)} \frac{tg(y) + t^2h(y) + tDg(y) \cdot (y - x)}{(t^2 - |y - x|^2)^{\frac{1}{2}}} dy$$

10. Fourier Method

Named, General Agranisms Statistics of 2D Floratin Spacetimes 1. Let the use disconsistential volume with a statistic volume in the part of $\frac{-r^2}{4\pi^2} = \frac{r^2}{4\pi^2} = \frac{r}{4\pi^2} = \frac$

De L'Europaranderreprotenses $\begin{cases} u_0 = 0 & 0 < x < 1, 0 < t \le T \\ u(x,0) = u(x) & 0 < x \le 1 \end{cases} \\ u(x,0) = u(x) & 0 < x \le 1 \end{cases} \\ u(x,0) = u(x) & 0 < x \le 1 \\ u(x,0) = u(x) & 0 < x \le 1 \end{cases} \\ u(x,0) = u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x,0) = u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x,0) = u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x,0) = u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 \end{cases} \\ u(x) = 0 & 0 < x \le 1 \end{cases} \\ u(x) = 0 \end{cases} \\ u$

Remember (Hern Equation) Consider the initial boundary value prelition of function equations: $\begin{cases} u_1 - u_{2j} = f(p, t), & 0 With both for a solution is formed as Fourier notice: <math display="block">u_{3j}(x) = \sum_{k=0}^{N} u_{j}(t) \sin\left(\frac{u(x)}{T}\right).$

Periodic Boundary Conditions

Remark: (General Approximate Solution of 1D Poisson's Equation)

• Let the one-dimensional boundary value problem be given:

$$\begin{cases} -T \frac{d^2 u}{dx^2} = f(x), & 0 < x < l, \\ u(0) = u(l) = 0. \end{cases}$$

• Approximate the right hand side f(x) by a finite Fourier series $f_N(x)$:

$$f_N(x) = \sum_{n=1}^{N} c_n \sin\left(\frac{n\pi x}{l}\right).$$

• The Fourier coefficients are (n = 1, ..., N)

$$c_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi x}{l}\right) dx.$$

• Then an approximate solution of the boundary value problem is given by:

$$u_N(x) = \sum_{n=1}^{N} \frac{l^2 c_n}{T n^2 \pi^2} \sin\left(\frac{n\pi x}{l}\right).$$

Remember: (Heat Equation) Consider the initial boundary value problem of the heat equation:

$$\begin{cases} u_t - u_{xx} &= f(x,t) &: 0 < x < l, \ 0 < t \le T, \\ u(x,0) &= g(x) &: 0 \le x \le l, \\ u(0,t) &= u(l,t) = 0 &: 0 \le t \le T. \end{cases}$$

We look for a solution in form of a Fourier series:

$$u_N(x) = \sum_{n=1}^{\infty} a_n(t) \sin\left(\frac{n\pi x}{l}\right).$$

Periodic Boundary Conditions

Let the initial boundary value problem be given on **interval** [-l, l]:

$$\begin{cases} u_t - u_{xx} &= f(x,t) : -l < x < l, \ 0 < t \le T, \\ u(x,0) &= g(x) : -l \le x \le l, \\ u(-l,t) &= u(l,t) : 0 \le t \le T, \\ u_x(-l,t) &= u_x(l,t) : 0 \le t \le T. \end{cases}$$

Periodic functions on [-l, l] are

$$\psi(x) = \frac{1}{2}, \quad \psi(x) = \cos\left(\frac{n\pi x}{l}\right), \quad \psi(x) = \sin\left(\frac{n\pi x}{l}\right)$$

satisfy the given Neumann boundary conditions.

A solution approach using Fourier series thus reads

$$u(x,t) = a_0(t) + \sum_{n=1}^{\infty} \left(a_n(t) \cos\left(\frac{n\pi x}{l}\right) + b_n(t) \sin\left(\frac{n\pi x}{l}\right) \right).$$

Die Lösung des Anfangsrandwertproblems

$$\begin{cases} u_{tt} - u_{xx} &= 0 & : 0 < x < l, 0 < t \le T \\ u(x,0) &= g(x) & : 0 \le x \le l \\ u_t(x,0) &= h(x) & : 0 \le x \le l \\ u(0,t) &= u(l,t) = 0 : 0 \le t \le T \end{cases}$$

ist gegeben durch

$$u(x,t) = \sum_{n=1}^{\infty} \left\{ b_n \cos\left(\frac{n\pi}{l}t\right) + \frac{d_n l}{n\pi} \sin\left(\frac{n\pi}{l}t\right) \right\} \sin\left(\frac{n\pi x}{l}\right)$$

Dabei sind b_n die Fourier-Koeffizienten der Entwicklung der vorgegeben Anfangsbedingung u(x,0) = g(x) und d_n die entsprechenden Koeffizienten von $u_t(x,0) = h(x)$.

11. Numerical Methods for Elliptic Equations

rier Method

Model Problem

$$-\Delta u = f$$
 in $\Omega = [0, 1]^2 \in \mathbb{R}^2$
 $u = 0$ on $\partial \Omega$

Finite Differences

Discretize the differential operator

$$-\Delta = L \approx L_h$$

here:
$$\frac{du}{dx} = \frac{u(x_{i+1}) - u(x_i)}{\Delta x} + \mathcal{O}(\Delta x), \quad \Delta x = x_{i+1} - x_i.$$

$$\frac{\partial u}{\partial x} = \frac{u_{i+1,j} - u_{i-1,j}}{2\Delta x} + \mathcal{O}(\Delta x^2)$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2} + \mathcal{O}(\Delta x^2)$$

$$-\Delta u = \frac{4u_{i,j} - u_{i+1,j} - u_{i-1,j} - u_{i,j+1} - u_{i,j-1}}{\Delta x^2} + \mathcal{O}(\Delta x^2)$$

Finite Volumes

Discretize the flux form

Finite Elements

"Discretize function space"

$$-\Delta u = f \quad \text{in } \Omega, \quad u = 0 \text{ on } \partial\Omega,$$

$$\Rightarrow \int_{\Omega} -\Delta u \varphi \ dx = \int_{\Omega} f \varphi \ dx \quad \forall \varphi$$

$$\Rightarrow \int_{\Omega} \nabla u \cdot \nabla \varphi \ dx = \int_{\Omega} f \varphi \ dx \quad \forall \varphi$$

Now, replace the variational problem $a(u_h, v_h) = f(v_h)$ by

$$u_i \cdot a(\varphi_i, \varphi_j) = f(\varphi_j), \quad \forall i, j = 1, \dots, N,$$

since $u_h = \sum u_i \varphi_i$.

Linear System of Equations

$$L_h u_h = f_h$$

12. Numerical Methodes for Transport Equation

Lagrangian Perspective

Algorithm

• Position: v = v(t). • Velocity: v = v(x,t). Particle position can be computed by $\dot{x} = \frac{dx}{dt} = v(x,t)$ With initial condition $x(t=0) = x_0$

$$\begin{array}{c} \vdots \\ \vdots \\ \vdots \\ z(t) = 0 \\ \end{array}$$

Problem: Passive advection $(s \equiv 0)$:

$$\frac{dx}{dt}$$
 = $v(x, t)$, $x(0) = x_0$,
 $\frac{d\rho}{dt}$ = 0, $\rho(x, 0) = \rho_0(x)$.

Strategy

- Solve $\frac{dx}{dt} = v$ by any ODE solver,
- Solve $\frac{d\rho}{dt}=0$ by finite difference. $\frac{d\rho}{dt}\approx\frac{\rho(x_i,t^{n+1}-\rho(x_i^-,t^n)}{\Delta t}=0$

Lagrangian Perspective

• Position:
$$x = x(t)$$
.

• Velocity:
$$v = v(x, t)$$
.

Particle position can be computed by

$$\dot{x} = \frac{dx}{dt} = v(x, t)$$

With initial condition

$$x(t=0) = x_0$$

Problem: Passive advection $(s \equiv 0)$:

$$\frac{dx}{dt} = v(x,t), \quad x(0) = x_0,$$

$$\frac{d\rho}{dt} = 0, \quad \rho(x,0) = \rho_0(x).$$

Strategy:

- Solve $\frac{dx}{dt} = v$ by any ODE solver,
- Solve $\frac{d\rho}{dt} = 0$ by finite difference.

$$\frac{d\rho}{dt} \approx \frac{\rho(x_i, t^{n+1} - \rho(x_i^-, t^n))}{\Delta t} = 0$$

$$\Rightarrow \rho^+ = \rho^-.$$

 x_i , i = 1: N grid points, t^n , n = 1: M time steps.

Algorithm

Society and Partial Differential Equations

Natural Hazards form the Interface to Society Gobal Change Impact on Society Mitigation

Deterministic Approach

- Uncerstanding the physical principle
 Physical model for probabilistic methods
 Solve differential equations!

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{F}(\rho) + \nabla(\nu \nabla \rho) = S(\rho)$$

Natural Hazards form the Interface to Society

Gobal Change Impact on Society

Prevention Mitigation Planning

Deterministic Approach

- Uncerstanding the physical principle
- Physical model for probabilistic methods
- Solve differential equations!

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{F}(\rho) + \nabla(\nu \nabla \rho) = S(\rho)$$

Examples

Tsunami

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} + g\nabla \eta = R,$$
$$\frac{\partial \eta}{\partial t} + \nabla \cdot (H\mathbf{v}) = 0.$$

 $R = -f\mathbf{k} \times \mathbf{v} - rH^{-1}\mathbf{v}|\mathbf{v}| + H^{-1}\nabla(K_hH\nabla\mathbf{v})$

Terms:

- Coriolis
- Bottom friction
- · Viscosity (Smagorinsky approach)

Storm Surge

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} + g\nabla \eta = R,$$
$$\frac{\partial \eta}{\partial t} + \nabla \cdot (H\mathbf{v}) = 0.$$

Oil Spill

$$\frac{\partial K_{oil}}{\partial t} + \overrightarrow{\imath l} \cdot \overrightarrow{\nabla} K_{oil} - \overrightarrow{\nabla} \cdot \left(k_d \overrightarrow{\nabla} K_{oil}\right) = \frac{R}{\rho_{oil}}$$

$$k_d = \frac{g h_{oil}^2 \rho_{oil} \left(\rho_w - \rho_{oil}\right)}{\rho_w k_f}$$

Volcano Ash Dispersion

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\mathbf{v}\rho) + \nabla(\nu \nabla \rho) = S(\rho)$$

Source: Elena Gerwing, Matthias Hort, J.B. (MSc Project)

